Question

The uniform bar shown in the diagram has a length of 0.80 m. The bar begins to rotate from rest in the horizontal...



The uniform bar shown in the diagram has a length of 0.80 m. The bar begins to rotate from rest in the horizontal plane about the axis passing through its left end. What will be the magnitude of the angular momentum L of the bar 6.0 s after the motion has begun? The forces acting on the bar are shown.
Express your answer in kg*m2/s

1 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1
Concepts and reason

The concepts required to solve the given questions are torque and the angular momentum.

Initially, calculate the net torque. Finally, calculate the final angular momentum.

Fundamentals

The expression for the torque is as follows:

τ=dLdt\tau = \frac{{d\vec L}}{{dt}}

Here, dLd\vec L is the change in the angular momentum and dt is the change in the time.

Also, the expression for the torque is as follows:

τ=r×F\tau = \vec r \times \vec F

Here, r\vec r is the position vector and F\vec F is the force.

The expression for the angular momentum is as follows:

L=r×pL = \vec r \times \vec p

Here, p\vec p is the linear momentum vector and r\vec r is the position vector.

The net torque acting is as follows:

τnet=r1×F1+r2×F2{\tau _{{\rm{net}}}} = {\vec r_1} \times {\vec F_1} + {\vec r_2} \times {\vec F_2}

Here, r1{\vec r_1} is the distance from the axis to the first force F1{\vec F_1} and r2{\vec r_2} is the distance from the axis to the second force F2{\vec F_2} .

Substitute 0.60m(x^)0.60{\rm{ m}}\left( {\hat x} \right) for r1{\vec r_1} , 12N(y^)12{\rm{ N}}\left( {\hat y} \right) for F1{\vec F_1} , 0.80m(x^)0.80{\rm{ m}}\left( {\hat x} \right) for r2{\vec r_2} , and 8N(y^){\rm{8 N}}\left( { - \hat y} \right) for F2{\vec F_2} in the equation τnet=r1×F1+r2×F2{\tau _{{\rm{net}}}} = {\vec r_1} \times {\vec F_1} + {\vec r_2} \times {\vec F_2} .

τnet=(0.60m(x^))×(12N(y^))+(0.80m(x^))×(8N(y^))=0.80Nm(z^)\begin{array}{c}\\{\tau _{{\rm{net}}}} = \left( {0.60{\rm{ m}}\left( {\hat x} \right)} \right) \times \left( {12{\rm{ N}}\left( {\hat y} \right)} \right) + \left( {0.80{\rm{ m}}\left( {\hat x} \right)} \right) \times \left( {{\rm{8 N}}\left( { - \hat y} \right)} \right)\\\\ = 0.80{\rm{ N}} \cdot {\rm{m}}\left( {\hat z} \right)\\\end{array}

Therefore, the magnitude of the net torque is as follows:

τnet=0.80Nm\left| {{\tau _{{\rm{net}}}}} \right| = 0.8{\rm{0 N}} \cdot {\rm{m}}

From the definition of torque,

τ=dLdt=LfLi(tfti)\begin{array}{c}\\\tau = \frac{{d\vec L}}{{dt}}\\\\ = \frac{{{{\vec L}_{\rm{f}}} - {{\vec L}_{\rm{i}}}}}{{\left( {{t_{\rm{f}}} - {t_{\rm{i}}}} \right)}}\\\end{array}

Therefore, the expression for torque is as follows:

τ=LfLi(tfti)\tau = \frac{{{{\vec L}_{\rm{f}}} - {{\vec L}_{\rm{i}}}}}{{\left( {{t_{\rm{f}}} - {t_{\rm{i}}}} \right)}}

Here, suffix i represents the initial and f represents the final.

The expression for the initial angular momentum is given by,

Li=ri×pi{\vec L_{\rm{i}}} = {\vec r_{\rm{i}}} \times {\vec p_{\rm{i}}}

Here, ri{\vec r_{\rm{i}}} is the initial position vector and pi{\vec p_{\rm{i}}} is the initial momentum vector.

Now, substitute ri×pi{\vec r_{\rm{i}}} \times {\vec p_{\rm{i}}} for Li{\vec L_{\rm{i}}} in the equation τ=LfLi(tfti)\tau = \frac{{{{\vec L}_{\rm{f}}} - {{\vec L}_{\rm{i}}}}}{{\left( {{t_{\rm{f}}} - {t_{\rm{i}}}} \right)}} .

τ=Lf(ri×pi)(tfti)=Lf(ri×mvi)(tfti)\begin{array}{c}\\\tau = \frac{{{{\vec L}_{\rm{f}}} - \left( {{{\vec r}_{\rm{i}}} \times {{\vec p}_{\rm{i}}}} \right)}}{{\left( {{t_{\rm{f}}} - {t_{\rm{i}}}} \right)}}\\\\ = \frac{{{{\vec L}_{\rm{f}}} - \left( {{{\vec r}_{\rm{i}}} \times m{{\vec v}_{\rm{i}}}} \right)}}{{\left( {{t_{\rm{f}}} - {t_{\rm{i}}}} \right)}}\\\end{array}

Substitute 0.00 m/s for vi{\vec v_{\rm{i}}} and 0.00s0.00{\rm{ s}} for ti{t_{\rm{i}}} in above equation and rearrange the equation as follows:

τ=Lfm(ri×(0.00m/s))(tf(0.00s))0.80Nm=LftfLf=tf(0.80Nm)\begin{array}{c}\\\tau = \frac{{{{\vec L}_{\rm{f}}} - m\left( {{{\vec r}_{\rm{i}}} \times \left( {0.00{\rm{ m/s}}} \right)} \right)}}{{\left( {{t_{\rm{f}}} - \left( {0.00{\rm{ s}}} \right)} \right)}}\\\\0.80{\rm{ N}} \cdot {\rm{m}} = \frac{{{{\vec L}_{\rm{f}}}}}{{{t_{\rm{f}}}}}\\\\{{\vec L}_{\rm{f}}} = {t_{\rm{f}}}\left( {0.80{\rm{ N}} \cdot {\rm{m}}} \right)\\\end{array}

Substitute 6.0 s for tf{t_{\rm{f}}} in the equation Lf=tf(0.80Nm){\vec L_{\rm{f}}} = {t_{\rm{f}}}\left( {0.80{\rm{ N}} \cdot {\rm{m}}} \right) .

Lf=(6.0s)(0.80Nm)=4.8kgm2s1\begin{array}{c}\\{{\vec L}_{\rm{f}}} = \left( {6.0{\rm{ s}}} \right)\left( {0.80{\rm{ N}} \cdot {\rm{m}}} \right)\\\\ = 4.8{\rm{ kg}} \cdot {{\rm{m}}^2} \cdot {{\rm{s}}^{ - 1}}\\\end{array}

Ans:

The value of the magnitude of the angular momentum is equal to 4.8kgm2s14.8{\rm{ kg}} \cdot {{\rm{m}}^2} \cdot {{\rm{s}}^{ - 1}} .

Add a comment
Know the answer?
Add Answer to:
The uniform bar shown in the diagram has a length of 0.80 m. The bar begins to rotate from rest in the horizontal...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT