Question

7. Let X a be random variable with probability density function given by -1 < x < 1 fx(x) otherwise (a) Find the mean u and v

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(a)

The mean and variance are given by:

\begin{align*} \mu &= E(X) \\ &= \int_{-1}^{1} x * f_X(x) \ dx \\ &= \int_{-1}^{1} x * \frac{1}{2} \ dx \\ &= \begin{bmatrix} \frac{x^2}{4}\end{bmatrix}_{x=-1}^{x=1} \\ &= \frac{1^2}{4} - \frac{(-1)^2}{4} \\ &= \frac{1}{4} - \frac{1}{4} \\ &= \textbf{0 \ \ \ \ \ [Answer]} \end{align*}

\begin{align*} E(X^2) &= \int_{-1}^{1} x^2 * f_X(x) \ dx \\ &= \int_{-1}^{1} x^2 * \frac{1}{2} \ dx \\ &= \begin{bmatrix} \frac{x^3}{6}\end{bmatrix}_{x=-1}^{x=1} \\ &= \frac{1^3}{6} - \frac{(-1)^3}{6} \\ &= \frac{1}{6} + \frac{1}{6} \\ &= \frac{1}{3} \\ \sigma^2 &= E(X^2) - [E(X)]^2 \\ &= \frac{1}{3} - 0^2 \\ &= \mathbf{\frac{1}{3} \ \ \ \ \ [Answer]} \end{align*}

(b)

The moment generating function of X is given y:

\begin{align*} M_X(t) &= \int_{-1}^{1} e^{tx} f_X(x) \ dx \\ &= \int_{-1}^{1} e^{tx} *\frac{1}{2} \ dx \\ &= \frac{1}{2}\int_{-1}^{1} e^{tx} \ dx \\ &= \frac{1}{2}\begin{bmatrix} \frac{e^{tx}}{t} \end{bmatrix}_{x=-1}^{x=1} \\ &= \mathbf{\frac{e^{t} - e^{-t}}{2t}\ \ ; t \ne 0 \ \ \ \ [Answer]} \end{align*}

The MGF is defined for all real values of t except zero because if we put the value of t=0 in the above formula, we get 0/0 indeterminate form.

(c)

From part (b) we see that the MGF is not defined when t=0. Now, to find what the value of the MGF at t=0, we can use a different approach. We put t=0 first and then integrate to find MX(0):

\begin{align*} M_X(0) &= \int_{-1}^{1} e^{0*x} f_X(x) \ dx \\ &= \int_{-1}^{1} 1* f_X(x) \ dx \\ &= \int_{-1}^{1} f_X(x) \ dx \\ &= \textbf{1 \ \ \ \ \ \ [Answer]} \end{align*}

(d)

\begin{align*} M_{S_n} (t) &= E[e^{tS_n}] \\ &= E[e^{t(\frac{X_1+...+X_n}{\sqrt{n}})}] \\ &= E[e^{\frac{tX_1}{\sqrt{n}}} * e^{\frac{tX_2}{\sqrt{n}}} * ... * e^{\frac{tX_n}{\sqrt{n}}}] \\ &= E[e^{\frac{tX_1}{\sqrt{n}}}] * E[e^{\frac{tX_2}{\sqrt{n}}} ]* ... * E[e^{\frac{tX_n}{\sqrt{n}}}] \ \ \ \ \text{(Since, X}_i's \text{ are independent)} \\ &= M_{X_1}(t/\sqrt{n})*M_{X_2}(t/\sqrt{n})*...*M_{X_n}(t/\sqrt{n}) \\ &= [M_{X_1}(t/\sqrt{n})]^n \ \ \ \ \text{(Since, X}_i's \text{ are identically distributed)} \\ &= \mathbf{\begin{bmatrix} \frac{e^{t/\sqrt{n}}-e^{-t/\sqrt{n}}}{2(t/\sqrt{n})} \end{bmatrix}^n \ \ \ \ [Answer]} \end{align*}

For any queries, feel free to comment and ask.

If the solution was helpful to you, don't forget to upvote it by clicking on the 'thumbs up' button.

Add a comment
Know the answer?
Add Answer to:
7. Let X a be random variable with probability density function given by -1 < x < 1 fx(x) otherwise (a) Find the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT