Question

As shown in Figure 3(a), a wooden block B with mass mg 2.4 kg on a rough inclined plane is connected to a massless spring (k
(b) As shown in Figure 3(b), another wooden block A of mass mA 1.2 kg made of the P A same material as block B is released fr
Determine how much further down the slope the two blocks move together after they collide before the two blocks come to a mom

0 0
Add a comment Improve this question Transcribed image text
Answer #1

мре 0-6E4 кое о* 80 м - Мда.Чрат ks lbow Solidario mpepa= 4x06XC025118.27521ěny д- 0. 25 мкг 0.3 и в 2 X MM — T + Fmax = mBgho defermine & t limer momentury before the perent Here we have four formula for Conserrahim af suqular momenten PEx Prata EXning Work Enyx theorm. Wow - Ewfrictim OkE (MA sind) l 4 al IL MAYA ² o a_silvo AkalculФ е чле -ae &імд — ме Cula) — gels (0-la = 1.4 667 m/stoner 60 talet mechatteotsugy me BESTE Canterre -AE = Whet Warsteinet, change in total Mehanical Emer = WorkWent a work done ley gravity went (Mat Me) g(sind) d- WheWhich onek (matme) gauso(a) Weat & Whe= (MA+MB) ga( sind ek ause) =(م ده هم له هل من سكه وعلمه )= 28S مل - مكة- جامعة موعه 0 - هووو هل حلم ويو. ن د ه |

Add a comment
Know the answer?
Add Answer to:
As shown in Figure 3(a), a wooden block B with mass mg 2.4 kg on a rough inclined plane is connected to a massless sp...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (a) As shown in Figure 4(a), a wooden block A with mass ma = 2.4 kg...

    (a) As shown in Figure 4(a), a wooden block A with mass ma = 2.4 kg on a rough inclined plane is connected to a massless spring (k = 160 N/m) fixed to the top of the inclined plane. The angle of the inclined plane is @ = 37º and the coefficient of kinetic friction is uk = 0.30. The other end of block A is connected to block B via a massless cord passing over a pulley P of...

  • Two blocks m1=8.1 kg and mass m2 are connected by a massless cord over a massless...

    Two blocks m1=8.1 kg and mass m2 are connected by a massless cord over a massless pulley as shown below. the block of mass m2 is placed on a rough inclined surface at an angle (theta = 55) Two blocks my = 8.1 kg and mass m2 are connected by a massless cord over a massless pulley as shown below. The block of mass mz is placed on a rough inclined surface at an angle = 55°, and a force...

  • Block A in the figure has mass mA = 4.20 kg, and block B has mass...

    Block A in the figure has mass mA = 4.20 kg, and block B has mass mB = 2.40 kg. The coefficient of kinetic friction between block B and the horizontal plane is μk = 0.520. The inclined plane is frictionless and at angle θ = 34.0°. The pulley serves only to change the direction of the cord connecting the blocks. The cord has negligible mass. Find (a) the tension in the cord and (b) the magnitude of the acceleration...

  • Q2)) A block of mass m= 4 kg slides down a frictionless plane inclined 30° to...

    Q2)) A block of mass m= 4 kg slides down a frictionless plane inclined 30° to the horizontal . The block is connected to other block ( moving vertically) of mass m2= 1kg by massless string through a rough pulley (with moment of ineria I= 12 mR", m= 2kg and R=0.5 m) as shown in the fig. a) Find the acceleration of the blocks. b) Find the acceleration of the pulley. c) Find the tension in the string . 30

  • A block of mass = 3.21 kg on a frictionless plane inclined at angle theta =...

    A block of mass = 3.21 kg on a frictionless plane inclined at angle theta = 34.5 degree is connected by a cord over a massless, frictionless pulley to a second block of mass m_2 = 2.35 kg hanging vertically (see the figure), What is the acceleration of the hanging block (choose the positive direction down)? What Is the tension in the cord?

  • A block of mass m1 = 3.23 kg on a frictionless plane inclined at angle θ...

    A block of mass m1 = 3.23 kg on a frictionless plane inclined at angle θ = 32.3° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.60 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord?

  • Rope connected two objects in the inclined plane, A block of mass m1 = 22.9 kg...

    Rope connected two objects in the inclined plane, A block of mass m1 = 22.9 kg is at rest on a plane inclined at Theta = 35.0 degree above the horizontal. The block is connected via a rope and mass less pulley system to another block of mass m2 = 26.1 kg. as shown in the figure. The coefficients of static and kinetic friction between block 1 and the inclined plane Is MU_s is unknown. If the blocks are released...

  • A block of mass m1 = 3.28 kg on a frictionless plane inclined at angle θ...

    A block of mass m1 = 3.28 kg on a frictionless plane inclined at angle θ = 31.8° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.74 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord? Answered (a) which is 1.65 but cant get (b). Its not 27.6.

  • A block of mass 2m is intially at rest on a rough inclined plane where ?...

    A block of mass 2m is intially at rest on a rough inclined plane where ? < 30 and is connected to an object with mass m as shown. the rope may be considerd massless, and the pulley may be considerd frictionless . the cofficient of static friction between the block and the plabe is us and the cofficient of kinetic friction between the block and the plane is uk. 1. What is the magnitude of the static frictional force...

  • A block of mass m1 = 3.7 Kg on a frictionless plane inclined at an angle...

    A block of mass m1 = 3.7 Kg on a frictionless plane inclined at an angle θ = 30° is connected by a cord over a massless frictionless pulley to a second block of mass m2 = 2.3 Kg. ​a) What is the magnitude of the acceleration of each block?    b) What is the Tension of the cord? c) What is the Normal force?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT