Question

Q2)) A block of mass m= 4 kg slides down a frictionless plane inclined 30° to the horizontal . The block is connected to othe
0 0
Add a comment Improve this question Transcribed image text
Answer #1

folutions solution: oma m2 UD equation of motion for me muig. sino - T = mia. -O air acceleration along the incline. equationfrom ① & W T.-T2 = Im a = (mig.sino- nua) - malg+a) mr.gising-mag - (mut m2).a. (m & mutme). a = (my.xino- m2).g. putting va

Add a comment
Know the answer?
Add Answer to:
Q2)) A block of mass m= 4 kg slides down a frictionless plane inclined 30° to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m1=3.7 kg on a frictionless plane inclined as angle θ=30 degrees is...

    A block of mass m1=3.7 kg on a frictionless plane inclined as angle θ=30 degrees is connected by a cord over a massless, frictionless pulley to a second block of mass m2=2.3 kg hanging vertically (shown above). What are (a) the magnitude of the acceleration of each block, (b) the direction of the acceleration of the hanging block, and (c) the tension in the cord?

  • A block of mass m1 = 3.23 kg on a frictionless plane inclined at angle θ...

    A block of mass m1 = 3.23 kg on a frictionless plane inclined at angle θ = 32.3° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.60 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord?

  • A block of mass m1 = 3.7 Kg on a frictionless plane inclined at an angle...

    A block of mass m1 = 3.7 Kg on a frictionless plane inclined at an angle θ = 30° is connected by a cord over a massless frictionless pulley to a second block of mass m2 = 2.3 Kg. ​a) What is the magnitude of the acceleration of each block?    b) What is the Tension of the cord? c) What is the Normal force?

  • A block of mass m1 = 3.28 kg on a frictionless plane inclined at angle θ...

    A block of mass m1 = 3.28 kg on a frictionless plane inclined at angle θ = 31.8° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.74 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord? Answered (a) which is 1.65 but cant get (b). Its not 27.6.

  • A block of mass = 3.21 kg on a frictionless plane inclined at angle theta =...

    A block of mass = 3.21 kg on a frictionless plane inclined at angle theta = 34.5 degree is connected by a cord over a massless, frictionless pulley to a second block of mass m_2 = 2.35 kg hanging vertically (see the figure), What is the acceleration of the hanging block (choose the positive direction down)? What Is the tension in the cord?

  • 6. (20 points) A block of mass M-10.0 kg slides down a rough inclined plane with...

    6. (20 points) A block of mass M-10.0 kg slides down a rough inclined plane with an acceleration 0.300 m/s. The plane makes an angle theta-30.0 with th block is connected by a string, of negligible mass, that is wrapped around a pulley pulley has a mass Mp-3.00 kg, radius 0.0200 m and may be modeled as a uniform disc e horizontal. The oefficient of kinetic friction on the incline and the torque exerted on the pulley. A numerical value...

  • 4) A block of mass m1 = 3.7kg on a frictionless plane, inclined at an angle...

    4) A block of mass m1 = 3.7kg on a frictionless plane, inclined at an angle of 0 = 30°, is connected by a cord over a massless, frictionless pulley to a second of mass m2 = 4.3 kg. Refer to the accompanying figure below. a) What is the acceleration of the hanging block? b) What is the tension in the cord? N 2 2 M2 J Mig 1 30° a) T-mg = ma Tsino-m, g=m, a x m, atmig...

  • a statellite A block of mass 8 kg slides up a 30° inclined plane while a...

    a statellite A block of mass 8 kg slides up a 30° inclined plane while a cord connects it, over a small frictionless pulley, to a second block of mass 6 kg falling vertically. The coefficient of friction on the surface is 0.13. What is the magnitude of the acceleration of the system? b. What is the tension in the cord?

  • } %60 A block of mass mi-4.70 kg on a frictionless plane inclined at angle θ-35.00...

    } %60 A block of mass mi-4.70 kg on a frictionless plane inclined at angle θ-35.00 is connected by a cord over a massless, frictionless pulley to a second block of mass m' = 2.60 kg. Calculate : (a) The magnitude of the acceleration of each block (b) The direction of the acceleration of the hanging block (c) The tension in the cord 4, mo (10 marks)

  • Chapter 5 Questions 13 A block of mass m1 = 3.14 kg on a frictionless plane...

    Chapter 5 Questions 13 A block of mass m1 = 3.14 kg on a frictionless plane inclined at angle 0 = 32.7° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.56 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord? o (a) Number Units (b) Number Units

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT