Question

An ice cube with a mass of 46.4 g at 0.0 ∘C is added to a...

An ice cube with a mass of 46.4 g at 0.0 ∘C is added to a glass containing 4.20×102 g of water at 45.0 ∘C . Determine the final temperature of the system at equilibrium. The specific heat capacity of water, ?s , is 4.184 J/g⋅∘C , and the standard enthalpy of fusion, Δ?∘fus , of water is 6.01×103 J/mol . Assume that no energy is transferred to or from the surroundings.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

mass of ice cube = 46.4 g

moles of ice = 46.4 / 18.015 = 2.575

temperature = 0.0 oC

mass of water = 420 g

temperature = 45 oC

heat absorbed by ice cube = heat release by water

Q ice = 2.575 x 6.01 x 10^3 + 46.4 x 4.184 x (Tf - 0)

         = 15479.54 + 194.14 (Tf - 0)

heat released = 420 x 4.184 x (45 - Tf)

                      = 1757.28 x (45 - Tf)

1757.28 x (45 - Tf) = 15479.54 + 194.14 (Tf - 0)

79077.6 - 1757.28 Tf = 15479.54 + 194.14 Tf

Tf = 32.59

final temperature = 32.6 oC

Add a comment
Know the answer?
Add Answer to:
An ice cube with a mass of 46.4 g at 0.0 ∘C is added to a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An ice cube with a mass of 53.0 g at 0.0 °C is added to a...

    An ice cube with a mass of 53.0 g at 0.0 °C is added to a glass containing 368 g of water at 45.0 °C. Determine the final temperature of the system at equilibrium. The specific heat capacity of water, Cs, is 4.184 J/g·°C and the standard enthalpy of fusion, ΔH°fus, of water is 6.01 × 103 J/mol. Assume that no energy is transferred to or from the surroundings.

  • Two 20.0 g ice cubes at -12.0 °C are placed into 215 g of water at...

    Two 20.0 g ice cubes at -12.0 °C are placed into 215 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature, T, of the water after all the ice melts. heat capacity of H2O(s) heat capacity of H2O(1) enthalpy of fusion of H,O 37.7 J/(mol-K) 75.3 J/(mol-K) 6.01 kJ/mol Ti =

  • Two 20.0 g ice cubes at -12.0 °C are placed into 225 g of water at...

    Two 20.0 g ice cubes at -12.0 °C are placed into 225 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature, Tf, of the water after all the ice melts. heat capacity of H2O(s) heat capacity of H2O(1) enthalpy of fusion of H20 37.7 J/(molK) 75.3 J/(mol·K) 6.01 kJ/mol Tf= 9.96

  • Two 20.0 g ice cubes at -12.0 °C are placed into 215 g of water at...

    Two 20.0 g ice cubes at -12.0 °C are placed into 215 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature, T. of the water after all the ice melts. heat capacity of H,O() heat capacity of H,O(1) enthalpy of fusion of H,0 37.7J/(mol-K) 75.3 J/(mol-K) 6.01 kJ/mol Ti = 24.99 "C Incorrect

  • by Two 20 0g ice cubes at-13.0 ℃ are placed into 205 g of water at...

    by Two 20 0g ice cubes at-13.0 ℃ are placed into 205 g of water at 25.0 ℃ Assuming no transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts heat capacity of H20(s) 37.7J(mol K) heat capacity of H20() 75.3 J(mol K) enthalpy of fusion of H2O 6.01 kJ/mol

  • Two 20.0g ice cubes at -12.0^degree C are placed into 285g of water at 25.0^degree C....

    Two 20.0g ice cubes at -12.0^degree C are placed into 285g of water at 25.0^degree C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts. heat capacity of H2O(s) is 37.7 J/mol*K heat capacity of H2O(l) is 75.3 J/mol*K enthalpy of fusion of H20 is 6.01 kJ/mol

  • An ice cube of mass 8.5 g at temperature 0∘C is added to a cup of...

    An ice cube of mass 8.5 g at temperature 0∘C is added to a cup of coffee, whose temperature is 90 ∘C and which contains 130 g of liquid. Assume the specific heat capacity of the coffee is the same as that of water. The heat of fusion of ice (the heat associated with ice melting) is 6.0 kJ/mol. Find the temperature of the coffee after the ice melts.(in C)

  • How much heat (in kJ) is needed to convert an 18.0-g cube of ice at 0.0...

    How much heat (in kJ) is needed to convert an 18.0-g cube of ice at 0.0 oC into liquid water at 20.0 oC? For water (H2O): heat of fusion = 6.02 kJ/mol, specific heat capacity (liquid) = 4.18 J/g oC.            a)           1.61 kJ b)           7.52 kJ c)            89.6 kJ d)           518 kJ

  • An 12 g ice cube at -19?C is put into a Thermos flask containing 100 cm3...

    An 12 g ice cube at -19?C is put into a Thermos flask containing 100 cm3 of water at 20?C. By how much has the entropy of the cube-water system changed when a final equilibrium state is reached? The specific heat of ice is 2200 J/kg K and that of liquid water is 4187 J/kg K. The heat of fusion of water is 333 × 103 J/kg. An 12 g ice cube at -19 C is put into a Thermos...

  • To treat a burn on his hand, a person decides to place an ice cube on...

    To treat a burn on his hand, a person decides to place an ice cube on the burned skin. The mass of the ice cube is 19.2 g, and its initial temperature is −11.2 ∘C. The water resulting from the melted ice reaches the temperature of his skin, 30.1 ∘C. How much heat is absorbed by the ice cube and resulting water? Assume that all of the water remains in the hand. Constants for water can be found in this...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT