Question

If the tension in a 2 m string was provided by a 150g mass, and the...

  1. If the tension in a 2 m string was provided by a 150g mass, and the µ for the sting was 1.0 g/m, what is the speed of a wave traveling along the string, and what is the fundamental frequency for a standing wave on this string?
  2. If you doubled the mass density of the string and tripled the hanging mass, what would happen to the fundamental frequency of the standing wave?

Please answer both!

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
If the tension in a 2 m string was provided by a 150g mass, and the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • If you doubled the mass density of the string and tripled the hanging mass, what would...

    If you doubled the mass density of the string and tripled the hanging mass, what would happen to the fundamental frequency of the standing wave? (Not equation based, more conceptual understanding)

  • A standing wave pattern is created on a string with mass density u- 3x 10 kg/m....

    A standing wave pattern is created on a string with mass density u- 3x 10 kg/m. A wave generator with frequency f- 65 Hz is attached to one end of the string and the other end goes over a pulley and is connected to a mass (ignore the weight of the string between the pulley and mass). The distance between the generator and pulley is L- 0.74 m. Initially the 3rd harmonic wave pattern is formed. What is the wavelength...

  • Wave on a String A string with linear mass density 2.0 g/m is stretched along the...

    Wave on a String A string with linear mass density 2.0 g/m is stretched along the positive x-axis under a tension of 20 N. The other end of the string, at x = 0m is tied to a hook that oscillates up and down at a frequency of 100Hz with a maximum displacement from equilibrium of 1.0 mm. At t= 0s, the hook is at it's lowest point. (a) What are the wave speed and the wavelength on the string?...

  • Wave on a String A string with linear mass density 2.0 g/m is stretched along the...

    Wave on a String A string with linear mass density 2.0 g/m is stretched along the positive x-axis under a tension of 20 N. The other end of the string, at x = 0m is tied to a hook that oscillates up and down at a frequency of 100Hz with a maximum displacement from equilibrium of 1.0 mm. At t= 0s, the hook is at it's lowest point. (a) What are the wave speed and the wavelength on the string?...

  • A nylon guitar string has a linear density of 4.46 g/m and is under a tension...

    A nylon guitar string has a linear density of 4.46 g/m and is under a tension of 126 N. The fixed supports are D = 72.7 cm apart. The string is oscillating in the standing wave pattern shown in the figure. Calculate the (a) speed, (b) wavelength, and (c) frequency of the traveling waves whose superposition gives this standing wave.

  • algebra based physics 1. A steel guitar string has a mass per length of 0.720 g/m....

    algebra based physics 1. A steel guitar string has a mass per length of 0.720 g/m. If the length of the string between two fixed ends is 54.6 cm, what tension is needed for fundamental frequency of middle C (261.6 Hz)? a. What is the wavelength of the fundamental mode? b. What is the speed of the waves on the string? c. What tension is needed for the fundamental frequency? 2. Sketch the waveform of the third harmonic for a...

  • A nylon guitar string has a linear density of 33.9 g/m and is under a tension...

    A nylon guitar string has a linear density of 33.9 g/m and is under a tension of 296.0 N. The fixed supports are distance L 88.5 cm apart. The string is oscillating in the standing wave pattern shown in the figure. Calculate the speed of the traveling waves whose superposition gives this standing wave. Submit Answer Tries o/99 Calculate the wavelength of the traveling waves whose superposition gives this standing wave Submit Answer Tries 0/99 Calculate the frequency of the...

  • Problem 2 [8 pts] Oscillator As a quality control technician at a violin string factory, you cut a sample of E-string o...

    Problem 2 [8 pts] Oscillator As a quality control technician at a violin string factory, you cut a sample of E-string off a large roll. The sample that you cut has a mass of ms = 1.021 grams and a full length of 2.5 meters. To test the string, you stretch some of it across a length L = 0.35 m, applying tension by means of a hanging mass m (as pictured). A variable frequency oscillator is used to excite...

  • A string has a tension of 800N. the mass of the string is 200 g and...

    A string has a tension of 800N. the mass of the string is 200 g and the length is 80 cm. What is the wave speed? 3200 m/s 57 m/s 5.6 m/s 12.8 m/s    QUESTION 2 What is the speed of a wave bound between two fixed points. the wave is oscillating at 500 hz and the standing wave pattern is the fundamental.. Tthe length of the string is 72 cm. 840 m/s 1440 m/s 7.2 m/s 720 m/s...

  • A string has a linear density of 6.00 × 10-3 kg/m and is under a tension...

    A string has a linear density of 6.00 × 10-3 kg/m and is under a tension of 290 N. The string is 2.3 m long, is fixed at both ends, and is vibrating in the standing wave pattern (3rd harmonic). Determine the frequency of the traveling waves that make up the standing wave.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT