Question

3. (III) Three blocks on a frictionless horizontal surface are in contact with each other as shown in Fig. 4-54. A force F is applied to block A (mass mA). (a) Draw a free-body dia- gram for each block. Determine (b) the acceleration of the system (in terms of mA, mB, and mc), (c) the net force on each block, and (d) the force of contact that each block exerts on its neighbor. (e) If mA mB mc- F 96.0N, give numerical answers to (b), (c), and (d). Explain how your answers make sense intuitively. 10.0 kg and
circle on a frictionless tabletop. The other end of the string passes through a hole in the table (Fig. 8-62). Initially, the mass revolves with a speed Vi = 2.4 m/s in a circle of radius η 0.80 m. The string is then pulled slowly through the hole so that the radius is reduced to r2 0.48 m. What is the speed, v2, of the mass now? 80. A small mass m attached to the end of a string revolves in a 01 FIGURE 8-62 Problem 80
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
3. (III) Three blocks on a frictionless horizontal surface are in contact with each other as...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A small mass m attached to the end of a string revolves in a circle on...

    A small mass m attached to the end of a string revolves in a circle on a frictionless tabletop. The other end of the string passes through a hole in the table (Fig. 8-62). Initially, the mass revolves with a speed vi = 2.4 m/s in a circle of radius ri =0.80 m. The string is then pulled slowly through the hole so that the radius is reduced to r2 0.48 m. What is the speed, 2, of the m...

  • An air puck of mass 0.23 kg is tied to a string and allowed to revolve in a circle of radius 1.2 m on a frictionl...

    An air puck of mass 0.23 kg is tied to a string and allowed to revolve in a circle of radius 1.2 m on a frictionless horizontal table. The other end of the string passes through a hole in the center of the table, and a mass of 0.9 kg is tied to it. The suspended mass remains in equilibrium while the puck on the tabletop revolves. a) What is the tension in the string? (b) What is the force...

  • Object rotating on a string of changing length. A small mass m attached to the end...

    Object rotating on a string of changing length. A small mass m attached to the end of a string revolves in a circle on a friction-less tabletop. The other end of the string passes through a hole in the table. Initially the mass revolves with a speed 2.4 m/s in a circle of radius 0.80 m. The string is then pulled slowly through the hole so that the radius i reduced to 0.48 m. The final speed is 4.0 m/s...

  • 27. An air puck of mass m, = 0.25 kg is tied to a string and...

    27. An air puck of mass m, = 0.25 kg is tied to a string and allowed to revolve in a circle of radius R = 1.0 m on a frictionless hori- zontal table. The other end of the string passes through a hole in the center of the table, and a mass of m, = 1.0 kg is tied to it (Fig. P7.27). The suspended mass remains in equilibrium while the puck on the tabletop revolves. (a) What is...

  • A small block on a frictionless, horizontal surface has a mass of 2.60×10−2 kg . It...

    A small block on a frictionless, horizontal surface has a mass of 2.60×10−2 kg . It is attached to a massless cord passing through a hole in the surface (the figure (Figure 1)). The block is originally revolving at a distance of 0.300 m from the hole with an angular speed of 1.65 rad/s . The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.150 m. Model the block as...

  • 63. A crane's trolley at point P in Fig. 4-63 moves for a few seconds to...

    63. A crane's trolley at point P in Fig. 4-63 moves for a few seconds to the right with constant acceleration, and the 870-kg load hangs on a light cable at a 5.0° angle to the vertical as shown. What is the acceleration of the trolley and load? 5.0° FIGURE 4-63 Problem 63 at 1oo 8 (III) Three blocks on a frictionless horizontal surface are in contact with each other as shown in Fig. 4-54. A force F is applied...

  • An air puck of mass 0.18 kg is tied to a string and allowed to revolve...

    An air puck of mass 0.18 kg is tied to a string and allowed to revolve in a circle of radius 1.1 m on a frictionless horizontal table. The other end of the string passes through a hole in the center of the table, and a mass of 1.3 kg is tied to it. The suspended mass remains in equilibrium while the puck on the tabletop revolves (a) What is the tension in the string? (6) What is the force...

  • An air puck of mass 0.200 kg is tied to a string and allowed to revolve...

    An air puck of mass 0.200 kg is tied to a string and allowed to revolve in a circle of radius 1.03 m on a frictionless horizontal table. The other end of the string passes through a hole in the center of the table, and a mass of 1.22 kg is tied to it as seen in the figure below. The suspended mass remains in equilibrium while the puck on the tabletop revolves. What is the tension in the string?...

  • A small block on a frictionless, horizontal surface has a mass of 0.0260 kg. It is attached to a massless cord pass...

    A small block on a frictionless, horizontal surface has a mass of 0.0260 kg. It is attached to a massless cord passing through a hole in the surface (see figure below). The block is originally revolving at a distance of 0.320 m from the hole with an angular speed of 1.90rad/s. The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.160 m. Model the block as a particle.(a) Is angular...

  • A small block on a frictionless horizontal surface has a mass of 2.50×10^-2kg . It is attached to a massless cord passi...

    A small block on a frictionless horizontal surface has a mass of 2.50×10^-2kg . It is attached to a massless cord passing through a hole in the surface.The block is originally revolving at a distance of 0.300m from the hole with an angular speed of 1.75 rad/s . The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.150m . You may treat the block as a particle. How much work...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT