Question

The cube in the figure has edge length 1.40 m and is oriented as shown in...

The cube in the figure has edge length 1.40 m and is oriented as shown in a region of uniform electric field. Find the electric flux through the right face for the following electric fields, given in newtons per coulomb.
(a) 2.00i (I need to find the answer in N*m^2/C)
(b)-6.00j(I need to find the answer in N*m^2/C)
(c)-2.00i+4.00k(I need to find the answer in N*m^2/C)

(d) What is the total flux through the cube for each of these fields?
for (a) N · m2/C
for (b) N · m2/C
for (c) N · m2/C


0 0
Add a comment Improve this question Transcribed image text
Answer #1
Concepts and reason

The concept of electric flux is required to solve the problem.

First, determine the area of each face by squaring the edge length. Then, to determine the electric flux through the right face find the dot product between the area vector and the electric field vector. Finally, determine the net electric flux by adding the net electric flux through each face.

Fundamentals

The electric flux is defined as the number of electric field lines passing through a surface. The electric flux through a surface of area A is,

ΦE=EA{\Phi _E} = \vec E \cdot \vec A

Here, E is the electric field vector and A is the area vector which points perpendicular to the surface.

The magnitude of area vector is the area of the surface.

A vector is represented as,

A=Axi^+Ayj^+Azk^\vec A = {A_x}\hat i + {A_y}\hat j + {A_z}\hat k

Here, Ax{A_x} is the x-component of the vector, Ay{A_y} is the y component of the vector, Az{A_z} is the z component of the vector, i^\hat iis the unit vector along the x direction, j^\hat j is the unit vector along the y direction, and k^\hat k is the unit vector along the z direction.

The dot product of any unit vector with any other unit vector is zero. That is,

i^j^=0j^k^=0k^i^=0\begin{array}{c}\\\hat i \cdot \hat j = 0\\\\\hat j \cdot \hat k = 0\\\\\hat k \cdot \hat i = 0\\\end{array}

The dot product of any unit vector with itself is one. That is,

i^i^=1j^j^=1k^k^=1\begin{array}{c}\\\hat i \cdot \hat i = 1\\\\\hat j \cdot \hat j = 1\\\\\hat k \cdot \hat k = 1\\\end{array}

(a)

The area of each face of the cube is given as,

A=l2A = {l^2}

Here, l is the edge length of the face.

Substitute 1.40 m for l in the above equation.

A=(1.40m)2=1.96m2\begin{array}{c}\\A = {\left( {1.40{\rm{ m}}} \right)^2}\\\\ = 1.96{\rm{ }}{{\rm{m}}^2}\\\end{array}

The area vector for the right face is given as,

A=(1.96m2)j^\vec A = \left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\hat j

The electric field is given as,

E=(2.00N/C)i^\vec E = \left( {2.00{\rm{ N/C}}} \right)\hat i

Use the expression of electric flux.

Substitute (1.96m2)j^\left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\hat j for A\vec A and (2.00N/C)i^\left( {2.00{\rm{ N/C}}} \right)\hat i for E\vec E in the equation ΦE=EA{\Phi _E} = \vec E \cdot \vec A.

ΦE=(2.00N/C)i^(1.96m2)j^=(2.00N/C)(1.96m2)(i^j^)\begin{array}{c}\\{\Phi _E} = \left( {2.00{\rm{ N/C}}} \right)\hat i \cdot \left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\hat j\\\\ = \left( {2.00{\rm{ N/C}}} \right)\left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( {\hat i \cdot \hat j} \right)\\\end{array}

Substitute 0 for i^j^\hat i \cdot \hat j in the above expression of electric flux.

ΦE=(2.00N/C)(1.96m2)(0)=0Nm2/C\begin{array}{c}\\{\Phi _E} = \left( {2.00{\rm{ N/C}}} \right)\left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( 0 \right)\\\\ = 0{\rm{ N}} \cdot {{\rm{m}}^2}{\rm{/C}}\\\end{array}

(b)

Use the expression of electric flux.

Substitute (1.96m2)j^\left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\hat j for A\vec A and (6.00N/C)j^\left( { - 6.00{\rm{ N/C}}} \right)\hat j for E\vec E in the equation ΦE=EA{\Phi _E} = \vec E \cdot \vec A.

ΦE=(6.00N/C)j^(1.96m2)j^=(11.8Nm2/C)(j^j^)\begin{array}{c}\\{\Phi _E} = \left( { - 6.00{\rm{ N/C}}} \right)\hat j \cdot \left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\hat j\\\\ = - \left( {11.8\;{\rm{N}} \cdot {{\rm{m}}^2}{\rm{/C}}} \right)\left( {\hat j \cdot \hat j} \right)\\\end{array}

Substitute 1 for j^j^\hat j \cdot \hat j in the above expression of electric flux.

ΦE=(11.8Nm2/C)(1)=11.8Nm2/C\begin{array}{c}\\{\Phi _E} = - \left( {11.8\;{\rm{N}} \cdot {{\rm{m}}^2}{\rm{/C}}} \right)\left( 1 \right)\\\\ = - 11.8\;{\rm{N}} \cdot {{\rm{m}}^2}{\rm{/C}}\\\end{array}

(c)

Use the expression of electric flux.

Substitute (1.96m2)j^\left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\hat j for A\vec A and (2.00i^+4.00k^)N/C\left( { - 2.00\hat i + 4.00\hat k} \right){\rm{ N/C}} for E\vec E in equation ΦE=EA{\Phi _E} = \vec E \cdot \vec A.

ΦE=(2.00i^+4.00k^)N/C(1.96m2)j^=(2.00N/C)(1.96m2)(i^j^)+(4.00N/C)(1.96m2)(k^j^)\begin{array}{c}\\{\Phi _E} = \left( { - 2.00\hat i + 4.00\hat k} \right){\rm{ N/C}} \cdot \left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\hat j\\\\ = \left( { - 2.00{\rm{ N/C}}} \right)\left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( {\hat i \cdot \hat j} \right) + \left( {4.00{\rm{ N/C}}} \right)\left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( {\hat k \cdot \hat j} \right)\\\end{array}

Substitute 0 for i^j^\hat i \cdot \hat j and k^j^\hat k \cdot \hat j in the above expression of electric flux.

ΦE=(2.00N/C)(1.96m2)(0)+(4.00N/C)(1.96m2)(0)=0Nm2/C\begin{array}{c}\\{\Phi _E} = \left( { - 2.00{\rm{ N/C}}} \right)\left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( 0 \right) + \left( {4.00{\rm{ N/C}}} \right)\left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( 0 \right)\\\\ = 0{\rm{ N}} \cdot {{\rm{m}}^2}{\rm{/C}}\\\end{array}

(d.1)

The electric field is given as,

E=(2.00N/C)i^\vec E = \left( {2.00{\rm{ N/C}}} \right)\hat i

For the front face:

The area vector pointing in the x direction is given as,

A=(1.96m2)i^\vec A = \left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\hat i

Substitute (1.96m2)i^\left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\hat i for A\vec A and (2.00N/C)i^\left( {2.00{\rm{ N/C}}} \right)\hat i for E\vec E in the equation ΦE=EA{\Phi _E} = \vec E \cdot \vec A.

Φ1=(2.00N/C)i^(1.96m2)i^=(2.00N/C)(1.96m2)(i^i^)\begin{array}{c}\\{\Phi _1} = \left( {2.00{\rm{ N/C}}} \right)\hat i \cdot \left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\hat i\\\\ = \left( {2.00{\rm{ N/C}}} \right)\left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( {\hat i \cdot \hat i} \right)\\\end{array}

Substitute 1 for i^i^\hat i \cdot \hat i in the above expression of electric flux.

Φ1=(2.00N/C)(1.96m2)(1)=3.92Nm2/C\begin{array}{c}\\{\Phi _1} = \left( {2.00{\rm{ N/C}}} \right)\left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( 1 \right)\\\\ = 3.92{\rm{ N}} \cdot {{\rm{m}}^2}{\rm{/C}}\\\end{array}

For the back face:

The area vector pointing in the x direction is given as,

A=(1.96m2)(i^)\vec A = \left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( { - \hat i} \right)

Substitute (1.96m2)(i^)\left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( { - \hat i} \right) for A\vec A and (2.00N/C)i^\left( {2.00{\rm{ N/C}}} \right)\hat i for E\vec E in the equation ΦE=EA{\Phi _E} = \vec E \cdot \vec A.

Φ2=(2.00N/C)i^(1.96m2)(i^)=(2.00N/C)(1.96m2)(i^i^)\begin{array}{c}\\{\Phi _2} = \left( {2.00{\rm{ N/C}}} \right)\hat i \cdot \left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( { - \hat i} \right)\\\\ = - \left( {2.00{\rm{ N/C}}} \right)\left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( {\hat i \cdot \hat i} \right)\\\end{array}

Substitute 1 for i^i^\hat i \cdot \hat i in the above expression of electric flux.

Φ2=(2.00N/C)(1.96m2)(1)=3.92Nm2/C\begin{array}{c}\\{\Phi _2} = - \left( {2.00{\rm{ N/C}}} \right)\left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( 1 \right)\\\\ = - 3.92{\rm{ N}} \cdot {{\rm{m}}^2}{\rm{/C}}\\\end{array}

For all the other faces of the cube the area vector is perpendicular to the electric field and the dot product of any unit vector with any other unit vector is zero. Hence, the electric flux for all the other faces is zero.

The net electric flux is given as,

ΦE=Φ1+Φ2{\Phi _{\rm{E}}} = {\Phi _1} + {\Phi _2}

Substitute 3.92Nm2/C3.92{\rm{ N}} \cdot {{\rm{m}}^2}{\rm{/C}} for Φ1{\Phi _1} and3.92Nm2/C - 3.92{\rm{ N}} \cdot {{\rm{m}}^2}{\rm{/C}} forΦ2{\Phi _2} in the equationΦE=Φ1+Φ2{\Phi _{\rm{E}}} = {\Phi _1} + {\Phi _2}.

ΦE=3.92Nm2/C+(3.92Nm2/C)=0Nm2/C\begin{array}{c}\\{\Phi _{\rm{E}}} = 3.92{\rm{ N}} \cdot {{\rm{m}}^2}{\rm{/C}} + \left( { - 3.92{\rm{ N}} \cdot {{\rm{m}}^2}{\rm{/C}}} \right)\\\\ = 0{\rm{ N}} \cdot {{\rm{m}}^2}{\rm{/C}}\\\end{array}

(d.2)

The electric field is given as,

E=(6.00N/C)j^\vec E = \left( { - 6.00{\rm{ N/C}}} \right)\hat j

For the right face:

The area vector for the right face is given as,

A=(1.96m2)j^\vec A = \left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\hat j

Substitute (1.96m2)j^\left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\hat j for A\vec A and (6.00N/C)j^\left( { - 6.00{\rm{ N/C}}} \right)\hat j for E\vec E in the equation ΦE=EA{\Phi _E} = \vec E \cdot \vec A.

Φ1=(6.00N/C)j^(1.96m2)j^=(11.8Nm2/C)(j^j^)\begin{array}{c}\\{\Phi _1} = \left( { - 6.00{\rm{ N/C}}} \right)\hat j \cdot \left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\hat j\\\\ = - \left( {11.8\;{\rm{N}} \cdot {{\rm{m}}^2}{\rm{/C}}} \right)\left( {\hat j \cdot \hat j} \right)\\\end{array}

Substitute 1 for j^j^\hat j \cdot \hat j in the above expression of electric flux.

Φ1=(11.8Nm2/C)(1)=11.8Nm2/C\begin{array}{c}\\{\Phi _1} = - \left( {11.8\;{\rm{N}} \cdot {{\rm{m}}^2}{\rm{/C}}} \right)\left( 1 \right)\\\\ = - 11.8\;{\rm{N}} \cdot {{\rm{m}}^2}{\rm{/C}}\\\end{array}

For the left face:

The area vector pointing in the x direction is given as,

A=(1.96m2)(j^)\vec A = \left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( { - \hat j} \right)

Substitute (1.96m2)(j^)\left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( { - \hat j} \right) for A\vec A and (6.00N/C)j^\left( { - 6.00{\rm{ N/C}}} \right)\hat j for E\vec E in the equation ΦE=EA{\Phi _E} = \vec E \cdot \vec A.

Φ2=(6.00N/C)j^(1.96m2)(j^)=(11.8Nm2/C)(j^j^)\begin{array}{c}\\{\Phi _2} = \left( { - 6.00{\rm{ N/C}}} \right)\hat j \cdot \left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( { - \hat j} \right)\\\\ = \left( {11.8\;{\rm{N}} \cdot {{\rm{m}}^2}{\rm{/C}}} \right)\left( {\hat j \cdot \hat j} \right)\\\end{array}

Substitute 1 for j^j^\hat j \cdot \hat j in the above expression of electric flux.

Φ2=(11.8Nm2/C)(1)=11.8Nm2/C\begin{array}{c}\\{\Phi _2} = \left( {11.8\;{\rm{N}} \cdot {{\rm{m}}^2}{\rm{/C}}} \right)\left( 1 \right)\\\\ = 11.8\;{\rm{N}} \cdot {{\rm{m}}^2}{\rm{/C}}\\\end{array}

For all the other faces of the cube the area vector is perpendicular to the electric field and the dot product of any unit vector with any other unit vector is zero. Hence, the electric flux for all the other faces is zero.

The net electric flux is given as,

ΦE=Φ1+Φ2{\Phi _{\rm{E}}} = {\Phi _1} + {\Phi _2}

Substitute 11.8Nm2/C11.8\;{\rm{N}} \cdot {{\rm{m}}^2}{\rm{/C}} for Φ1{\Phi _1} and11.8Nm2/C - 11.8\;{\rm{N}} \cdot {{\rm{m}}^2}{\rm{/C}} forΦ2{\Phi _2} in the equationΦE=Φ1+Φ2{\Phi _{\rm{E}}} = {\Phi _1} + {\Phi _2}.

ΦE=11.8Nm2/C+(11.8Nm2/C)=0Nm2/C\begin{array}{c}\\{\Phi _{\rm{E}}} = 11.8\;{\rm{N}} \cdot {{\rm{m}}^2}{\rm{/C}} + \left( { - 11.8\;{\rm{N}} \cdot {{\rm{m}}^2}{\rm{/C}}} \right)\\\\ = 0{\rm{ N}} \cdot {{\rm{m}}^2}{\rm{/C}}\\\end{array}

(d.3)

The electric field is given as,

E=(2.00i^+4.00k^)N/CE = \left( { - 2.00\hat i + 4.00\hat k} \right){\rm{ N/C}}

For the front face:

The area vector pointing in the x direction is given as,

A=(1.96m2)i^\vec A = \left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\hat i

Substitute (1.96m2)i^\left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\hat i for A\vec A, (2.00i^+4.00k^)N/C\left( { - 2.00\hat i + 4.00\hat k} \right){\rm{ N/C}} for E\vec E, and 1 for i^i^\hat i \cdot \hat i in the equation ΦE=EA{\Phi _E} = \vec E \cdot \vec A.

Φ1=((2.00i^+4.00k^)N/C)(1.96m2)i^=(2.00N/C)(1.96m2)(i^i^)=3.92Nm2/C2\begin{array}{c}\\{\Phi _1} = \left( {\left( { - 2.00\hat i + 4.00\hat k} \right){\rm{ N/C}}} \right) \cdot \left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\hat i\\\\ = \left( { - 2.00{\rm{ N/C}}} \right)\left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( {\hat i \cdot \hat i} \right)\\\\ = - 3.92{\rm{ N}} \cdot {{\rm{m}}^2}/{{\rm{C}}^2}\\\end{array}

For the back face:

The area vector pointing in the x direction is given as,

A=(1.96m2)(i^)\vec A = \left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( { - \hat i} \right)

Substitute (1.96m2)i^ - \left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\hat i for A\vec A, (2.00i^+4.00k^)N/C\left( { - 2.00\hat i + 4.00\hat k} \right){\rm{ N/C}} for E\vec E, and 1 for i^i^\hat i \cdot \hat i in the equation ΦE=EA{\Phi _E} = \vec E \cdot \vec A.

Φ2=((2.00i^+4.00k^)N/C)(1.96m2)i^=(2.00N/C)(1.96m2)(i^i^)=3.92Nm2/C2\begin{array}{c}\\{\Phi _2} = \left( {\left( { - 2.00\hat i + 4.00\hat k} \right){\rm{ N/C}}} \right) \cdot \left( { - 1.96{\rm{ }}{{\rm{m}}^2}} \right)\hat i\\\\ = \left( { - 2.00{\rm{ N/C}}} \right)\left( { - 1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( {\hat i \cdot \hat i} \right)\\\\ = 3.92{\rm{ N}} \cdot {{\rm{m}}^2}/{{\rm{C}}^2}\\\end{array}

For the upper face:

The area vector pointing in the z direction is given as,

A=(1.96m2)(k^)\vec A = \left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( {\widehat k} \right)

Substitute (1.96m2)(k^)\left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( {\widehat k} \right) for A\vec A, (2.00i^+4.00k^)N/C\left( { - 2.00\hat i + 4.00\hat k} \right){\rm{ N/C}} for E\vec E, and 1 for k^k^\widehat k \cdot \widehat k in the equation ΦE=EA{\Phi _E} = \vec E \cdot \vec A.

Φ3=((2.00i^+4.00k^)N/C)(1.96m2)k^=(4.00N/C)(1.96m2)(k^k^)=7.84Nm2/C2\begin{array}{c}\\{\Phi _3} = \left( {\left( { - 2.00\hat i + 4.00\hat k} \right){\rm{ N/C}}} \right) \cdot \left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\widehat k\\\\ = \left( {{\rm{4}}{\rm{.00 N/C}}} \right)\left( {1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( {\widehat k \cdot \widehat k} \right)\\\\ = 7.84{\rm{ N}} \cdot {{\rm{m}}^2}/{{\rm{C}}^2}\\\end{array}

For the lower face:

The area vector pointing in the z direction is given as,

A=(1.96m2)(k^)\vec A = \left( { - 1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( {\widehat k} \right)

Substitute (1.96m2)(k^)\left( { - 1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( {\widehat k} \right) for A\vec A, (2.00i^+4.00k^)N/C\left( { - 2.00\hat i + 4.00\hat k} \right){\rm{ N/C}} for E\vec E, and 1 for k^k^\widehat k \cdot \widehat k in the equation ΦE=EA{\Phi _E} = \vec E \cdot \vec A.

Φ4=((2.00i^+4.00k^)N/C)(1.96m2)k^=(4.00N/C)(1.96m2)(k^k^)=7.84Nm2/C2\begin{array}{c}\\{\Phi _4} = \left( {\left( { - 2.00\hat i + 4.00\hat k} \right){\rm{ N/C}}} \right) \cdot \left( { - 1.96{\rm{ }}{{\rm{m}}^2}} \right)\widehat k\\\\ = \left( {{\rm{4}}{\rm{.00 N/C}}} \right)\left( { - 1.96{\rm{ }}{{\rm{m}}^2}} \right)\left( {\widehat k \cdot \widehat k} \right)\\\\ = - 7.84{\rm{ N}} \cdot {{\rm{m}}^2}/{{\rm{C}}^2}\\\end{array}

For all the other faces of the cube the area vector is perpendicular to the electric field and the dot product of any unit vector with any other unit vector is zero. Hence, the electric flux for all the other faces is zero. The flux due to left and right surfaces will be zero.

Φ5=0Φ6=0\begin{array}{l}\\{\Phi _5} = 0\\\\{\Phi _6} = 0\\\end{array}

The net electric flux is given as,

ΦE=Φ1+Φ2+Φ3+Φ4+Φ5+Φ6{\Phi _{\rm{E}}} = {\Phi _1} + {\Phi _2} + {\Phi _3} + {\Phi _4} + {\Phi _5} + {\Phi _6}

Substitute 3.92Nm2/C - 3.92{\rm{ N}} \cdot {{\rm{m}}^2}{\rm{/C}} for Φ1{\Phi _1} and3.92Nm2/C3.92{\rm{ N}} \cdot {{\rm{m}}^2}{\rm{/C}} forΦ2{\Phi _2}, 0 for Φ5{\Phi _5} and Φ6{\Phi _6},7.84Nm2/C27.84{\rm{ N}} \cdot {{\rm{m}}^2}/{{\rm{C}}^2}for Φ3{\Phi _3}, and -7.84Nm2/C27.84{\rm{ N}} \cdot {{\rm{m}}^2}/{{\rm{C}}^2}for Φ4{\Phi _4} in the equationΦE=Φ1+Φ2+Φ3+Φ4+Φ5+Φ6{\Phi _{\rm{E}}} = {\Phi _1} + {\Phi _2} + {\Phi _3} + {\Phi _4} + {\Phi _5} + {\Phi _6}.

ΦE=(3.92Nm2/C)+(3.92Nm2/C)+(7.84Nm2/C2)+(7.84Nm2/C2)+0+0=0\begin{array}{c}\\{\Phi _{\rm{E}}} = \left( { - 3.92{\rm{ N}} \cdot {{\rm{m}}^2}{\rm{/C}}} \right) + \left( {3.92{\rm{ N}} \cdot {{\rm{m}}^2}{\rm{/C}}} \right) + \left( {7.84{\rm{ N}} \cdot {{\rm{m}}^2}/{{\rm{C}}^2}} \right) + \left( { - 7.84{\rm{ N}} \cdot {{\rm{m}}^2}/{{\rm{C}}^2}} \right) + 0 + 0\\\\ = 0\\\end{array}

Ans: Part a

The electric flux through the right face for the electric field (2.00)i^\left( {2.00} \right)\hat i is 0Nm2/C0{\rm{ N}} \cdot {{\rm{m}}^2}{\rm{/C}}.

Add a comment
Know the answer?
Add Answer to:
The cube in the figure has edge length 1.40 m and is oriented as shown in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3. -16 points My Notes Ask Your Tea The cube in the figure has edge length...

    3. -16 points My Notes Ask Your Tea The cube in the figure has edge length 1.40 m and is oriented as shown in a region of uniform electric field. Find the electric flux through the right face for the following electric fields, given in newtons per coulomb (a) 3.00 N m2/c (b)-6.00 (c)-8.001+9.00k N m2/c (d) What is the total flux through the cube for each of these fields? for (a) for (b) for (c) N m2/c N m2/c...

  • A cube of edge length 2.9 m is inside a region of a uniform electric field(shown...

    A cube of edge length 2.9 m is inside a region of a uniform electric field(shown below). What is the electric flux through the front face if the electric field in newtons per coulomb, is given by a) 61 c) what is the total flux through the cube for each of the above fields

  • Chapter 23, Problem 003 The cube in the figure has edge length 1.24 m and is...

    Chapter 23, Problem 003 The cube in the figure has edge length 1.24 m and is oriented as shown in a region of uniform electric field. Find the electric flux through the right face if the electric field (a) is in the positive x direction and has magnitude 8.81 N/C, (b) is in the negative y direction and has magnitude 2.91 N/C, and (c) is in the xz plane, has x component -3.95 N/C, and has z component 4.73 N/C....

  • A cube with edge length of 34.0 cm is positioned as shown in the figure. There...

    A cube with edge length of 34.0 cm is positioned as shown in the figure. There is a uniform electric field throughout the region given by E = 6.7i + 7.7j + 4.0k in N/C units, but there is no charge within the cube. What is the magnitude of the total flux through the five non-shaded faces?

  • A cube with edge length of 56.0 cm is positioned as shown in the figure. There...

    A cube with edge length of 56.0 cm is positioned as shown in the figure. There is a uniform electric field throughout the region given by E = 4.5i + 8.5j + 1.8k in N/C units, but there is no charge within the cube. What is the magnitude of the total flux through the five non-shaded faces?

  • A cube with edge length of 76.0 cm is positioned as shown in the figure. There...

    A cube with edge length of 76.0 cm is positioned as shown in the figure. There is a uniform electric field throughout the region given by E = 4.9i + 5.9j + 3.4k in N/C units, but there is no charge within the cube. What is the magnitude of the total flux through the five non-shaded faces?

  • A cube with edge length of 66.0 cm is positioned as shown in the figure. X...

    A cube with edge length of 66.0 cm is positioned as shown in the figure. X There is a uniform electric field throughout the region given by E = 5.5i 6.7j + 2.4k in N/C units, but there is no charge within the cube. What is the magnitude of the total flux through the five non- shaded faces? Tries 0/10 Submit Answer

  • An electricfeld given by E 6.6i-11y+7.4)j pierces the Gaussian cube of edge length 0.660 m and...

    An electricfeld given by E 6.6i-11y+7.4)j pierces the Gaussian cube of edge length 0.660 m and positioned as shown in the fgure. (The magnitude E is in newtons per coulomb and the position x is in meters.) What is the electricflux through the (a) top face, (b) bottom face, (c) left face, and (d) back face? (e) What is the net electric flux through the cube? Gaussian surface (a) Number Units (b) Number Units (c) Number Units (d) Number Units...

  • Assume the magnitude of the electric field on each face of the cube of edge L...

    Assume the magnitude of the electric field on each face of the cube of edge L = 1.11 m in the figure below is uniform and the directions of the fields on each face are as indicated. (Take E_1 = 33.9 N/C and E_2 = 27.1 N/C.) (a) Find the net electric flux through the cube. kJ N middot m^2/C (b) Find the net charge inside the cube. kJ C

  • Assume the magnitude of the electric field on each face of the cube of edge L-...

    Assume the magnitude of the electric field on each face of the cube of edge L- 1.07 m in the figure below is uniform and the directions of the fields on each face are as indicated. (Take El-31.8N/c and E,-23.5 NC.) E2 20.0 N/C 20.0 N/C Ei 20.0 N/C 50N/C (a) Find the net electric flux through the cube. N m2/c (b) Find the net charge inside the cube. (c) Could the net charge be a single point charge? O...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT