Question

tion 9 of 10 A potential difference Δν exists between the inner and outer surfaces of the membrane of a cell. The inner surface is negative relative to the outer surface. If 3.00 × 10-20 J of work is required to eject a positive sodium ion (Na+) from the interior ofthe cell, what is the magnitude of the potential difference (in millivolts) between the inner and outer surfaces of the cell? 0 3 4 5
0 0
Add a comment Improve this question Transcribed image text
Answer #1

This question is based on the concept of

1. Charge on the sodium ion

2. Relation between work and potential difference

The detailed solution is described below

Saluion Let us t、 me basics fast. egn: CY= chage -19 1.6米14

THANKS!!!

Add a comment
Know the answer?
Add Answer to:
tion 9 of 10 A potential difference Δν exists between the inner and outer surfaces of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A potential difference Δ? exists between the inner and outer surfaces of the membrane of a...

    A potential difference Δ? exists between the inner and outer surfaces of the membrane of a cell. The inner surface is negative relative to the outer surface. If 1.10×10−20 J of work is required to eject a positive sodium ion (Na+) from the interior of the cell, what is the magnitude of the potential difference (in millivolts) between the inner and outer surfaces of the cell?

  • A potential difference Δ V exists between the inner and outer surfaces of the membrane of...

    A potential difference Δ V exists between the inner and outer surfaces of the membrane of a cell. The inner surface is negative relative to the outer surface. If 2.70 x 10-20 of work is required to eject a positive sodium ion (Na+) from the interior of the cell, what is the magnitude of the potential difference (in millivolts) between the inner and outer surfaces of the cell? AVI mV

  • A potential difference exists between the inner and outer surfaces of the membrane of a cell....

    A potential difference exists between the inner and outer surfaces of the membrane of a cell. The inner surface is negative relative to the outer surface. If 1.15 x 10-20 J of work is required to eject a positive sodium ion (Na ) from the interior of the cell, what is the magnitude of the potential difference between the inner and outer surfaces of the cell?

  • A potential difference AV exists between the inner and outer surfaces of the membrane of a...

    A potential difference AV exists between the inner and outer surfaces of the membrane of a cell. The inner surface is negative relative to the outer surface. If 1.40 × 10 20 J of work is required to eject a positive potassium ion (K+) from the interior of the cell, what is the magnitude of the potential difference (in millivolts) between the inner and outer surfaces of the cell? lav mV

  • A potential difference Δ? exists between the inner and outer surfaces of the membrane of a...

    A potential difference Δ? exists between the inner and outer surfaces of the membrane of a cell. The inner surface is negative relative to the outer surface. If 2.50×10−20 J of work is required to eject a positive potassium ion (K+) from the interior of the cell, what is the magnitude of the potential difference (in millivolts) between the inner and outer surfaces of the cell? |Δ?|= ????? mV

  • Two red blood cells each have a mass of 9.05 x 10-14 kg and carry a...

    Two red blood cells each have a mass of 9.05 x 10-14 kg and carry a negative charge spread uniformly over their surfaces The repulsion arising from the excess charge prevents the cells from clumping together. One cell carries -2.10 pC and the other 2.60 pc, and each cell can be modeled as a sphere 3.75 × 10-6 m in radius. If the red blood cells start very far apart and move directly toward each other with the same speed,...

  • 1 and 2 please... For 1, is the towards the electric or is it moving in...

    1 and 2 please... For 1, is the towards the electric or is it moving in the opposite direction? Or is the magnitude zero? 1 -10 points SerCP10 16.P002 A proton is released from rest in a uniform electric field of magnitude 421 N/C. (a) Find the electric force on the proton magnitude (b) Find the acceleration of the proton m/'s magnitude direction (c) Find the distance it travels in 1.80 Us cm Submit Answer Save Progress 2. 10 points...

  • Consider the following for problems 1 through 5: The concept of electric potential difference plays an...

    Consider the following for problems 1 through 5: The concept of electric potential difference plays an important role in the human nervous system. A nervous impulse, for example, is an action potential that results from the temporal rising and lowering of the cell membrane potential, which in turn is caused by the equally temporal influx of sodium (Na+) ions into the cell. The sodium ions enter the cell through Hodgkin-Huxley channels, named after English physiologist/biophysicists Alan Hodgkin and Andrew Huxley....

  • A cell membrane consists of an inner and outer wall separated by a distance of approximately...

    A cell membrane consists of an inner and outer wall separated by a distance of approximately 10nm. Assume that the walls act like a parallel plate capacitor, each with a charge density of 10-5C/m2, and the outer wall is positively charged. Although unrealistic, assume that the space between cell walls is filled with air. part A: What is the magnitude of the electric field between the membranes? Part B: What is the magnitude of the force on a Mg++ ion...

  • The electric potential inside a cell is negative with respect to the surrounding extracellular fluid. The...

    The electric potential inside a cell is negative with respect to the surrounding extracellular fluid. The potential difference across the cell membrane is 70 mV. If a sodium ion with a mass of 22.98 u and a charge of 1.6 X 10-19 C is accelerated from rest through a membrane channel (proteins which allow the passive movement of ions (ion channels), water (aquaporins) or other solutes to passively pass through the membrane down their electrochemical gradient). Find the speed of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT