Question

(2 points) Collision derivation problem. A car is released from rest on a frictionless inclined plane (Figure 5.3). EXAMPLES: Calculate the momentum pi at the end of the plane in terms of the measured quantities x, y, L, and m. Assume θ is very small so that h/L is approximately equal to y/x. (Hint: use conservation of energy and the fact that K = 1/2mv2-p?/2m.) (Answer: pi If a car suffers a nearly elastic collision it will coast back up the ramp a distance Lf before reversing direction. What is the momentum pf immediately following the collision? The general expression for the change in momentum suffered in a collision is Δ . What is Δ p (the magnitude of Δ ) in terms of x, y, Li, Lf, and m? pi -pf This is the expression you should use in the experiment. Make sure you understand how to derive these equations. QUESTION If the car has a mass of 0.4 kg, the ratio of height to width of the ramp is 15/125, the initial displacement is 2.1 m, and the change in momentum is 0.98 kg*m/s, how far will it coast back up the ramp before changing directions?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

0. 96 0.9.8I hape u understood the problem, If Yes then Rate me. Or else comment for a better solution.

Add a comment
Know the answer?
Add Answer to:
(2 points) Collision derivation problem. A car is released from rest on a frictionless inclined plane...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Collision derivation problem. A car is released from rest on a frictionless inclined plane (Figure 5.3)....

    Collision derivation problem. A car is released from rest on a frictionless inclined plane (Figure 5.3). EXAMPLES: Calculate the momentum pi at the end of the plane in terms of the measured quantities x, y, L, and m. Assume θ is very small so that h/L is approximately equal to y/X (Hint: use conservation of energy and the fact that K 1/2mv2 -p2/2m.) [Answer: terms of the measured quantities that K 1/2mv2 =p2/2m.) If a car suffers a nearly elastic...

  • Collision derivation problem. A car is released from rest on a frictionless inclined plane (Figure 5.3)....

    Collision derivation problem. A car is released from rest on a frictionless inclined plane (Figure 5.3). EXAMPLES: Calculate the momentum pi at the end of the plane in terms of the measured quantities x, y, L, and m. Assume is very small so that h/L is approximately equal to y/x. (Hint: use conservation of energy and the fact that K=12mv2=p22m.) [Answer: p1=m(2gyLi/x)^1/2] If a car suffers a nearly elastic collision it will coast back up the ramp a distance Lf...

  • Collision derivation problem. A car is released from rest on a frictionless inclined plane (Figure 5.3)....

    Collision derivation problem. A car is released from rest on a frictionless inclined plane (Figure 5.3). EXAMPLES: Calculate the momentum pi at the end of the plane in terms of the measured quantities x, y, L, and m. Assume is very small so that h/L is approximately equal to y/x. (Hint: use conservation of energy and the fact that K=12mv2=p22m.) [Answer: p1=m(2gyLi/x)^1/2] If a car suffers a nearly elastic collision it will coast back up the ramp a distance Lf...

  • Figure 5.3: Diagram of the impuise experiment. A car falls down the air track from a...

    Figure 5.3: Diagram of the impuise experiment. A car falls down the air track from a height h. The track is inclined at an angie by placing a block of thickness y under ane of the legs of the track. The car is released a distance L from the ferce transducer, which is placed at the bottom of the track. Collision derivation problem. A car is released from rest on a frictionless inclined plane (Figure 5.3). EXAMPLES: Calculate the momentum...

  • Your design requires that the magnitude of the work done by this device to be equal...

    Your design requires that the magnitude of the work done by this device to be equal to ??, where ?? ? ?, from the initial contact to the maximum compression of the bumper spring. What is the magnitude of ?? Important Hint: Δ?, the maximum compression, will change with the energy dissipation device. 2, Figure 1: Figure 2: Consider the model above for an elastic collision used to design bumpers on cars. Car 1 with the bumper (a spring) has...

  • Use the worked example above to help you solve this problem. A merry-go-round modeled as a disk of mass M 7.00 x 101 kg and radius R 2.40 m is rotating in a horizontal plane about a frictionless vert...

    Use the worked example above to help you solve this problem. A merry-go-round modeled as a disk of mass M 7.00 x 101 kg and radius R 2.40 m is rotating in a horizontal plane about a frictionless vertical axle (see figure). (a) After a student with mass m 86.0 kg jumps onto the merry-go-round, the system's angular speed decreases to 1.95 rad/s. If the student walks slowly from the edge toward the center, find the angular speed of the...

  • 2. A bar on a hinge starts from rest and rotates with an angular acceleration α...

    2. A bar on a hinge starts from rest and rotates with an angular acceleration α (10 + 61), where α is in rad/s" and 1 is in seconds. Determine the angle in radians through which the bar turns in the first 4.00 s. 4. A dentist's drll starts from rest. After 3.20 s of constant an- gular acceleration, it turns at a rate of 2.51 × 104 rev/min. (a) Find the drill's angular acceleration. (b) Determine the angle (in...

  • Consider a cylindrical capacitor like that shown in Fig. 24.6. Let d = rb − ra...

    Consider a cylindrical capacitor like that shown in Fig. 24.6. Let d = rb − ra be the spacing between the inner and outer conductors. (a) Let the radii of the two conductors be only slightly different, so that d << ra. Show that the result derived in Example 24.4 (Section 24.1) for the capacitance of a cylindrical capacitor then reduces to Eq. (24.2), the equation for the capacitance of a parallel-plate capacitor, with A being the surface area of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT