Question

A car’s position as a function of time is given by the following equation: x(t) =...

  1. A car’s position as a function of time is given by the following equation:
  • x(t) = 5 m/s t + 2.8 m/s2t2– 0.15 m/s3t3.
  1. Find the average velocity from 0 to 5 s.
  2. Find the instantaneous velocity at 0, 3, and 5 s.
  3. Find the average acceleration from 0 to 5 s.
  4. Find the instantaneous acceleration at 0, 3, and 5 s.
  5. At what POSITIVE time does the car come to rest?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Velocity = dx/dt

Acceleration = dv/dt

3) 구6.25 Average velec6255. 25 hla 1S. 25 ,5-25-6 a ol a (3)s.6--(3)2.9m s +2.8t-osto t28O at t 20. 31&car cones to reat

Add a comment
Know the answer?
Add Answer to:
A car’s position as a function of time is given by the following equation: x(t) =...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. A car's position as a function of time is given by the following equation: x(t)-5...

    4. A car's position as a function of time is given by the following equation: x(t)-5 m/s t+2.8 m/s2 t-0.15 m/s3 t3. a. Find the average velocity from 0 to 5 s b. Find the instantaneous velocity at 0, 3, and 5s. c. Find the average acceleration from 0 to 5 s. d. Find the instantaneous acceleration at 0, 3, and 5 s. e. At what POSITIVE time does the car come to rest?

  • 4. The position of an object as a function of time is given by x(t) at-bt...

    4. The position of an object as a function of time is given by x(t) at-bt ct-d, where a 3.6 m/s, b 4 m/s, c = 60 m/s and d= 7 m. (a) Find the instantaneous velocity at t =24 s. (b) Find the average velocity over the first 2.4 seconds, (c) Find the instantaneous acceleration at 2.4 s, (d) Find the average acceleration over the first 2.4 seconds. (Be sure to include the correct signs) (a) and (c) are...

  • 3.) The position of a particle is given by x(t) = 3t3 – 2t2 – 5t...

    3.) The position of a particle is given by x(t) = 3t3 – 2t2 – 5t + 10, where t is in seconds and x is in meters. Find the initial position of the particle. Find the position of the particle after 5 seconds. Find the average velocity from 0 sec to t = 5sec Find the instantaneous velocity as a function of time Find the instantaneous velocity at t = 2 seconds. Find the instantaneous velocity at t=4 seconds...

  • The position of a particle as a function of time is given by x=(2.0m/s)t+(−3.0m/s3)t^3. Part A...

    The position of a particle as a function of time is given by x=(2.0m/s)t+(−3.0m/s3)t^3. Part A Plot x versus t for time from t=0 to t=1.0s. Part B Find the average velocity of the particle from t = 0.25 s to t = 0.35 s . Part C Find the average velocity of the particle from t = 0.29 s to t = 0.31 s . Part D Do you expect the instantaneous velocity at t = 0.30 s to...

  • horizontal position, x, of a particle as a function of time is given by the equation...

    horizontal position, x, of a particle as a function of time is given by the equation xo + vo t + ½ at' , where xa vo and ao are constants. Find the velocity as a function of time. (2) Ifx0 2.0 m and vo 2.0 m/s and ao 1.0 m/s, find the acceleration of the particle in problem (1) at the time t-10.0 s

  • A car moves along a straight street. The car’s initial position at time t1 is given...

    A car moves along a straight street. The car’s initial position at time t1 is given by a position vector x! . The car’s later position vector is x2! at time t2. Suppose x1! = 700 miˆ . and x2! =400miˆ. a. If t2 – t1 = 3.0 seconds, what is the car’s average speed (assuming the car only moved in one direction)? b. What was the car’s average velocity?

  • The position of a particle in meters is given by x=2.5t+3.1t^2- 4.5t^3, where t is the...

    The position of a particle in meters is given by x=2.5t+3.1t^2- 4.5t^3, where t is the time in seconds. What are the instantaneous velocity and instantaneous acceleration at t=0.0 s? At t=2.0 s? What are the average velocity and average acceleration for the time interval 0 <t< 2.0 s?

  • The position of an object as a function of time is given as x= At^3 +...

    The position of an object as a function of time is given as x= At^3 + Bt^2 + Ct + D. The constants are A=2.10m/s^3, B=1.00m/s^2, C=-4.10m/s, and D=3.00m. What is the velocity of the object at t = 10.0s? At what time(s) is the object at rest? What is the acceleration of the object t = 0.50s What is the acceleration as a function of time for the time interval from = -10.0s to t=10.0s

  • The position of a particle as a function of time is given by r(t)=(-3.0m/s)ti +(6.0m)j+[ 7.0m-(4.0m/s^3)t^3]k...

    The position of a particle as a function of time is given by r(t)=(-3.0m/s)ti +(6.0m)j+[ 7.0m-(4.0m/s^3)t^3]k a. what is the particle's displacement between t1=0 and t2=2.0s? b. determine the particle's instantaneous velocity as a function of time. c. what is the particle's average velocity between t1=0s and t2=2.0s? d. Is there a time when the particle has a velocity of zero? e. Determine the particle's instantaneous acceleration as a function of time? Can you please explain the formulas you used...

  • 1)a)The acceleration of a car is given by the function a(t) = sin(t) m / s²...

    1)a)The acceleration of a car is given by the function a(t) = sin(t) m / s² at time t s. The average acceleration for 0 ≤ t ≤ π s is _____ m / s². Round your answer to two decimal places. b) The acceleration is given by a(t) = 4t at time t s. The initial position is 1 m, and, the initial velocity is 3 m / s. At time t = 4 s, the position is _____...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT