Question

The displacement of an object in a spring-mass system in free damped oscillation is 4y +40y + 164y = 0 - 15e cos(4t 0.57)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

aped ascillation is uyuoy t1ug solution - 15e-st cos (ut-os. md has 2 2 ust4ost16u +41 Cst5)1 -st 5416 F (5-a) eFw] estin ut)-L . st sih ut 16 y (t) -15 est (as (ut-osn)tas-T) (t-7) 15st os(ut-os)+ (s C-7)e-) Sin ut-T) sst cas Cut-osn)as (t-)) 163 C)ohen should be impulse be aPplied Tn other words what is the value of T so that yi (T)-0. Pick e asitive bime closest to

Add a comment
Know the answer?
Add Answer to:
The displacement of an object in a spring-mass system in free damped oscillation is 4y'' +40y'...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A damped forced oscillation with mass-spring sys- tem is modeled as an nonhomogeneous ODE as following:...

    A damped forced oscillation with mass-spring sys- tem is modeled as an nonhomogeneous ODE as following: my" + cy' + ky = r(t) where m = 1 kg, k = 1 N/m and c = 2 N m/s. Initially, y(0) 1m y(0) = -1m/s. r(t) is the input force for this system. Initially (t = (s), there is no input force for this system r(t) = 0 N. At time t = 2s, a costant force (r(t) = 2 N)...

  • damped forced mass-spring system with m 2, and k 26, under the 2 Consider a influence...

    damped forced mass-spring system with m 2, and k 26, under the 2 Consider a influence of an external force F(t)= 82 cos (4t) 1, 7 = a) (8 points) Find the position u(t) of the mass at any time t, if u(0) 6 and u'(0) = 0. b) (4 points) Find the transient solution u(t) and the steady state solution U(t). How would you characterize these two solutions in terms of their behavior in time? We were unable to...

  • find Y1=, Y2=, and W(t)= (1 point) Find the function yi of t which is the...

    find Y1=, Y2=, and W(t)= (1 point) Find the function yi of t which is the solution of 25y" – 40y' + 12y = 0 y(0) = 1, yf(0) = 0. with initial conditions Yi = Find the function y2 of t which is the solution of 25y" – 40y' + 12y = 0 with initial conditions Y2 = Find the Wronskian W(t) = W(y1, y2). W(t) = Remark: You can find W by direct computation and use Abel's theorem...

  • Consider a damped forced mass-spring system with m = 1, γ = 2, and k =...

    Consider a damped forced mass-spring system with m = 1, γ = 2, and k = 26, under the influence of an external force F(t) = 82 cos(4t). a) (8 points) Find the position u(t) of the mass at any time t, if u(0) = 6 and u 0 (0) = 0. b) (4 points) Find the transient solution uc(t) and the steady state solution U(t). How would you characterize these two solutions in terms of their behavior in time?...

  • A car and its suspension system act as a block of mass m= on a vertical spring with k 1.2 x 10 N m, which is damped...

    A car and its suspension system act as a block of mass m= on a vertical spring with k 1.2 x 10 N m, which is damped when moving in the vertical direction by a damping force Famp =-rý, where y is the 1200 kg sitting 4. (a) damping constant. If y is 90% of the critical value; what is the period of vertical oscillation of the car? () by what factor does the oscillation amplitude decrease within one period?...

  • The position x of a mass m attached to a spring obeys the differential equation i...

    The position x of a mass m attached to a spring obeys the differential equation i + yi + w?x = 0 where y 2w. a) (2 marks) Write down expressions for the forces on the mass due to (i) the spring, and (ii) damping. (3 marks) Using a trial solution x = Ae"', show that a = --y/2 ± (y2/4 - «2)1/2 b) c) (4 marks) Show, by finding wd, that the solution is a damped oscillation of the...

  • 1. Solve the initial value problem for a damped mass-spring system acted upon by a sinusoidal...

    1. Solve the initial value problem for a damped mass-spring system acted upon by a sinusoidal force for some time interval f(t) = {10 sin 2t 0 0<t< y(0) 1, y'(0) -5 y"2y' 2y f(t), Tt zusor= 2. Consider two masses and three springs without no external force. The resulting force balance can be expressed as two second order ODES shown as below. mx=-(k k2)x1+ kzx2 m2x2 (k2k3)x2 + k2x1 15 If m 2,m2 ki = 1,k2 = 3, k3...

  • 7. An object attached with a spring undergoes simple harmonic motion, represented by the displacement = (1.0m) Cos...

    7. An object attached with a spring undergoes simple harmonic motion, represented by the displacement = (1.0m) Cos (1.5m t) . Compare with the standard equation for simple harmonic equation: x = A cos (w t). (i) Find the amplitude of oscillation? ute ew m .s (ii) Calculate the displacement x at t 0, 1, 2, 3, 4 and 5 seconds and filled the table below (calculator should be in radian mode for finding x values ) Displacement x (m)...

  • 21.6 A,B,C,D result given in part c of this exercise. 21.6. Consider a damped mass/spring system...

    21.6 A,B,C,D result given in part c of this exercise. 21.6. Consider a damped mass/spring system given by m dy gdy tr dt + ky = Fo cos(nt) where m. y. K and Fo are all positive constants. (This is the same as equation (214) a. Using the method of educated guess, derive the particular solution given by equation ser (21.10) on page 409. genelaidi b. Then show that the solution in the previous part can be rewritten as described...

  • 3. Consider a system consisting of a Ikg mass connected to a spring with spring co...

    3. Consider a system consisting of a Ikg mass connected to a spring with spring co -ION/. and a friction coefficient of 6N/m, subject to an external force of 15 cos 22 newtons). (a) (5 points) Write down the general solution to this system. myll thy't ny=0 "y"+by't loy=0 F(+)= Iscoszt m 2 tlom +10 - (0) (3 points) Label the steady state response and the transient part of the son above (0) (3 points) is the 3 points) Is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT