Question

A charged particle is held at the center of two concentric conducting spherical shells. Figure 23-35a...

A charged particle is held at the center of two concentric conducting spherical shells. Figure 23-35a shows a cross section. Figure 23-35b gives the net flux Φ through a Gaussian sphere centered on the particle, as a function of the radius r of the sphere. The scale of the vertical axis is set by Φs = 4.2 × 105 N•m2/C. What is the net charge (in Coulombs) of shell B?

uploaded image

0 0
Add a comment Improve this question Transcribed image text
Answer #1
Concepts and reason

The main concept used to solve the problem are flux and Gauss’s Law.

Initially, Use the graph to find the net flux through the gaussian sphere centered on the particle. Later, Use the gauss law to calculate the charge of the central particle and calculate the charge on shell A. Finally, use gauss law to calculate the charge in shell B.

Fundamentals

The gauss’s law is expressed as follows:

ϕ=qε0\phi = \frac{q}{{{\varepsilon _0}}}

Here, q is the charge, ϕ\phi is the flux, and ε0{\varepsilon _0} is the permittivity of free space.

From the graph,

The net flux through the gaussian sphere centered on the particle is ,

ϕ=7.56×105Nm2/C\phi = - 7.56 \times {10^5}\,{\rm{N}}{{\rm{m}}^{\rm{2}}}{\rm{/C}}

The charge of the central particle is obtained for small r as follows:

qcentral=ϕε0{q_{{\rm{central}}}} = \phi {\varepsilon _0}

Substitute 7.56×105Nm2/C - 7.56 \times {10^5}\,{\rm{N}}{{\rm{m}}^{\rm{2}}}{\rm{/C}} for ϕ\phi and 8.85×1012C2/Nm28.85 \times 1{{\rm{0}}^{ - {\rm{12}}}}\,{{\rm{C}}^{\rm{2}}}{\rm{/N}}{{\rm{m}}^{\rm{2}}} for ε0{\varepsilon _0} in expression qcentral=ϕε0{q_{{\rm{central}}}} = \phi {\varepsilon _0} .

qcentral=(7.56×105Nm2/C2)(8.85×1012C2/Nm2)=6.69×106C\begin{array}{c}\\{q_{{\rm{central}}}} = \left( { - 7.56 \times {{10}^5}\,{\rm{N}}{{\rm{m}}^{\rm{2}}}{\rm{/}}{{\rm{C}}^{\rm{2}}}} \right)\left( {8.85 \times 1{{\rm{0}}^{ - {\rm{12}}}}\,{{\rm{C}}^{\rm{2}}}{\rm{/N}}{{\rm{m}}^{\rm{2}}}} \right)\\\\ = - 6.69 \times {10^{ - 6}}\,{\rm{C}}\\\end{array}

Refer to the graph the net value of flux is expressed as follows:

ϕ=+3.36×105Nm2/C\phi = + 3.36 \times {10^5}\,{\rm{N}}{{\rm{m}}^{\rm{2}}}{\rm{/C}}

The charge of the central particle is obtained for small r as follows:

qenc=ϕε0{q_{{\rm{enc}}}} = \phi {\varepsilon _0}

Substitute +3.36×105Nm2/C + 3.36 \times {10^5}\,{\rm{N}}{{\rm{m}}^{\rm{2}}}{\rm{/C}} for ϕ\phi and 8.85×1012C2/Nm28.85 \times 1{{\rm{0}}^{ - {\rm{12}}}}\,{{\rm{C}}^{\rm{2}}}{\rm{/N}}{{\rm{m}}^{\rm{2}}} for ε0{\varepsilon _0} in expression qenc=ϕε0{q_{{\rm{enc}}}} = \phi {\varepsilon _0} .

qenc=(+3.36×105Nm2/C)(8.85×1012C2/Nm2)=2.97×106C\begin{array}{c}\\{q_{{\rm{enc}}}} = \left( { + 3.36 \times {{10}^5}\,{\rm{N}}{{\rm{m}}^{\rm{2}}}{\rm{/C}}} \right)\left( {8.85 \times 1{{\rm{0}}^{ - {\rm{12}}}}\,{{\rm{C}}^{\rm{2}}}{\rm{/N}}{{\rm{m}}^{\rm{2}}}} \right)\\\\ = 2.97 \times {10^{ - 6}}\,{\rm{C}}\\\end{array}

So, the charge on shell A is calculated as follows:

qA=qencqcentral{q_A} = {q_{{\rm{enc}}}} - {q_{{\rm{central}}}}

Substitute 2.97×106C2.97 \times {10^{ - 6}}\,{\rm{C}} qenc{q_{{\rm{enc}}}} and 6.69×106C - 6.69 \times {10^{ - 6}}\,{\rm{C}} for qcentral{q_{{\rm{central}}}} in expression qA=qencqcentral{q_A} = {q_{{\rm{enc}}}} - {q_{{\rm{central}}}} .

qA=2.97×106C(6.69×106C)=9.66×106C\begin{array}{c}\\{q_A} = 2.97 \times {10^{ - 6}}\,{\rm{C}} - \left( { - 6.69 \times {{10}^{ - 6}}\,{\rm{C}}} \right)\\\\ = 9.66 \times {10^{ - 6}}\,{\rm{C}}\\\end{array}

Consider the larger radius shell , the value for flux is expressed as follows:

ϕ=1.68×105Nm2/C\phi = - 1.68 \times {10^5}\,{\rm{N}}{{\rm{m}}^{\rm{2}}}{\rm{/C}}

The charge of the outer particle is obtained for small r as follows:

qtotal=ϕε0{q_{{\rm{total}}}} = \phi {\varepsilon _0}

Substitute 1.68×105Nm2/C - 1.68 \times {10^5}\,{\rm{N}}{{\rm{m}}^{\rm{2}}}{\rm{/C}} for ϕ\phi and 8.85×1012C2/Nm28.85 \times 1{{\rm{0}}^{ - {\rm{12}}}}\,{{\rm{C}}^{\rm{2}}}{\rm{/N}}{{\rm{m}}^{\rm{2}}} for ε0{\varepsilon _0} in expression qtotal=ϕε0{q_{{\rm{total}}}} = \phi {\varepsilon _0} .

qtotal=(1.68×105Nm2/C)(8.85×1012C2/Nm2)=1.48×106C\begin{array}{c}\\{q_{{\rm{total}}}} = \left( { - 1.68 \times {{10}^5}\,{\rm{N}}{{\rm{m}}^{\rm{2}}}{\rm{/C}}} \right)\left( {8.85 \times 1{{\rm{0}}^{ - {\rm{12}}}}\,{{\rm{C}}^{\rm{2}}}{\rm{/N}}{{\rm{m}}^{\rm{2}}}} \right)\\\\ = - 1.48 \times {10^{ - 6}}\,{\rm{C}}\\\end{array}

Thus, the charge on the shell B is calculated as follows:

qB=qtotalqAqcentral{q_B} = {q_{{\rm{total}}}} - {q_A} - {q_{{\rm{central}}}}

Substitute 9.66×106C9.66 \times {10^{ - 6}}\,{\rm{C}} for qA{q_A} , 6.69×106C - 6.69 \times {10^{ - 6}}\,{\rm{C}} for qcentral{q_{{\rm{central}}}} , and 1.48×106C - 1.48 \times {10^{ - 6}}\,{\rm{C}} for qtotal{q_{{\rm{total}}}} in expression qB=qtotalqAqcentral{q_B} = {q_{{\rm{total}}}} - {q_A} - {q_{{\rm{central}}}} .

qB=1.48×106C9.66×106C(6.69×106C)=4.45×106C\begin{array}{c}\\{q_B} = - 1.48 \times {10^{ - 6}}\,{\rm{C}} - 9.66 \times {10^{ - 6}}\,{\rm{C}} - \left( { - 6.69 \times {{10}^{ - 6}}\,{\rm{C}}} \right)\\\\ = - 4.45 \times {10^{ - 6}}\,{\rm{C}}\\\end{array}

Ans:

The net charge (in Coulombs) of shell B is 4.45×106C - 4.45 \times {10^{ - 6}}\,{\rm{C}} .

Add a comment
Know the answer?
Add Answer to:
A charged particle is held at the center of two concentric conducting spherical shells. Figure 23-35a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT