Question

A 73.0-g block carrying a charge Q = 36.0 μC is connected to a spring for which k = 77.0 N/m.

A 73.0-g block carrying a charge Q = 36.0 μC is connected to a spring for which k = 77.0 N/m. The block lies on a frictionless, horizontal surface and is immersed in a uniform electric field of magnitude E = 4.66 ✕ 104 N/C directed as shown in the figure below. The block is released from rest when the spring is unstretched (x = 0).

image.png

 (a) By what maximum distance does the block move from its initial position?


 (b) Find the subsequent equilibrium position of the block and the amplitude of its motion. (Indicate the direction with the sign of your answer.)


 (c) Using conservation of energy, find a symbolic relationship giving the potential difference between its initial position and the point of maximum extension in terms of the spring constant k, the amplitude A, and the charge Q.


0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A 73.0-g block carrying a charge Q = 36.0 μC is connected to a spring for which k = 77.0 N/m.
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Review problem. A block having mass m and charge +Q is connected to a spring having...

    Review problem. A block having mass m and charge +Q is connected to a spring having constant k. The block lies on a frictionless horizontal track, and the system is immersed in a uniform electric field of magnitude E, directed as shown in the figure below. The block is released from rest when the spring is unstretched (at x0) (a) By what maximum amount does the spring expand? (Use the following as necessary: Q, E, and k.) (b) What is...

  • A block weighing 14.0 N is attached to the lower end of a vertical spring (k...

    A block weighing 14.0 N is attached to the lower end of a vertical spring (k = 238.0 N/m), the other end of which is attached to a ceiling. The block oscillates vertically and has a kinetic energy of 1.90 J as it passes through the point at which the spring is unstretched. (a) What is the period of the oscillation? (b) Use the law of conservation of energy to determine the maximum distance the block moves above the point...

  • A block having mass m and charge +Q is connected to an insulating spring having a...

    A block having mass m and charge +Q is connected to an insulating spring having a force constant k. The block lies on a frictionless, insulating, horizontal track, and the system is immersed in a unifornm field of magnitude E directed as shown in the figure below. The block is released from rest when the spring is unstretched (at x = 0), we wish to show that the ensuing motion of the block is simple harma n, x-0 (a) Consider...

  • A block having mass m and charge +Q is connected to an insulating spring having a force constant k.

     A block having mass m and charge +Q is connected to an insulating spring having a force constant k. The block lies on a frictionless, insulating, horizontal track, and the system is immersed In a uniform electric field of magnitude E directed as shown in the figure below. The block Is released from rest when the spring Is unstretched (at x = 0). We wish to show that the ensuing motion of the block is simple harmonic. (a) Consider the system...

  • Consider hanging a block with mass m=1.0 kg from a spring with spring constant k=98 N/m....

    Consider hanging a block with mass m=1.0 kg from a spring with spring constant k=98 N/m. a) How much is the spring stretched at the equilibrium position (the position where the block hangs without bouncing)? b) If we lift the block up to the position where the spring is unstretched, and then let it go, what's the maximum speed of the block as it bounces? (neglect any friction) c) At the lowest point of the block's bounces, how much further...

  • A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m.

    A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 25° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk=0.18. In the initial position, where the spring is compressed by a distance of d = 0.12 m, the mass is at its lowest...

  • A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m

    A block of mass m = 3.5 kg is attached to a spring with spring constant k = 780 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 28° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk = 0.19. In the initial position, where the spring is compressed by a distance of d = 0.19 m, the mass is at...

  • A block of mass m is 650 g which is tied to a spring whose spring...

    A block of mass m is 650 g which is tied to a spring whose spring constant is 62 N/m. The block is pulled a distance x=11 cm from its equilibrium position at x=0 on a frictionless surface and released from rest at t=0 s. What are the angular frequency, the frequency, and the period of the resulting motion? What is the amplitude of the oscillation? What is the maximum speed Vm of the oscillating block, and where is the...

  • A block weighing 22 N oscillates at one end of a vertical spring for which k = 120 N/m; the other end of the spring is...

    A block weighing 22 N oscillates at one end of a vertical spring for which k = 120 N/m; the other end of the spring is attached to a ceiling. At a certain instant the spring is stretched 0.27 m beyond its relaxed length (the length when no object is attached) and the block has zero velocity. (a) What is the net force on the block at this instant? What are the (b) amplitude and (c) period of the resulting...

  • 51 A Block-Spring System A 320-g block connected to a light spring for which the force...

    51 A Block-Spring System A 320-g block connected to a light spring for which the force constant is 5.30 N/m is free to oscillate on a frictionless, horizontal surface. The block is displaced 5.10 cm from equilibrium and released from rest as in the figure. (A) Find the period of its motion. (B) Determine the maximum speed of the block. (C) What is the maximum acceleration of the block? (D) Express the position, velocity, and acceleration as functions of time...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT