Question


ANSWERS provided are just ballpark values... DO NOT WORK BACKWARD FROM THESE ANSWERS. NINE kg of AIR and FOUR kg of HELIUM
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given Air ma 9 kg, Ta - 900 k , Pa= 2oo KPa Air He R o 287 Helum mh 4 Kg , Th= 300k , Ph 800 kPa R 2.0773 kSIkgk Cu 3Go \eT/lSuffix m mixture (final state maua mp Un MmUm since ud T MaTa mTh mm Tm ui ba us ba Pp Final Pressure Pa Va Ph Vh P Vm Ra Rn

Add a comment
Know the answer?
Add Answer to:
ANSWERS provided are just "ballpark values"... DO NOT WORK BACKWARD FROM THESE ANSWERS. NINE kg of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Er<E EF E E> E) W>0) and Polytropic PathsSpcl Cases for Ideal Gas n 0 constant...

    Er<E EF E E> E) W>0) and Polytropic PathsSpcl Cases for Ideal Gas n 0 constant pressure n 1 constant temperature n k constant entropy, adiabatic (q 0) n constant volume and W<0 W 0 For air R 0.287 kJ/kg-K and k Cp/Cv 1.4 if pi 300 kPa, v, 0.861 m3/kg then T, 900 K For T Ta if pa /p 3 then va = m2/kg pv RT and (T, n/(n-1) p2 V1 For vi v if po /p1 3...

  • A piston-cylinder assembly initially contains 0.8 kg of air at 100 kPa and 300 K. It...

    A piston-cylinder assembly initially contains 0.8 kg of air at 100 kPa and 300 K. It is then compressed in a polytropic process PV3 = C to half the original volume. Assuming the ideal gas model for air and specific heat ratio is constant, k=1.4, determine (a) the final temperature, (b) work and heat transfer, each in kJ. R= 0.287 kJ/kg K. W, 82

  • Problem 2 A spring-loaded piston-cylinder device contains 1 kg of carbon dioxide that is initially at...

    Problem 2 A spring-loaded piston-cylinder device contains 1 kg of carbon dioxide that is initially at 100 kPa and 25°C (State 1). Heat is added until the gas reaches 800°C, at which point the pressure is 300 kPa (State 2) (a) Determine the boundary work (kJ) done by the CO2. Assume the spring is linear. (b) Determine the amount of heat transfer (kJ) into the CO2. Data for CO2: R = 0.1889 kJ/(kg K), Cpo = 0.846 kJ/(kg K), Cvo...

  • A gas in a cylinder piston system occupies V, - 15 mºat P. = 220 kPa...

    A gas in a cylinder piston system occupies V, - 15 mºat P. = 220 kPa and T, -20°C. Then, the gas undergoes a polytropic compression process until its temperature becomes T, 300'C. The entropy change of the gas during this process is AS - -1.7626 kJ/K, (AS-S.-5.). By assuming ideal gas (R = 0.3 kJ/kg.K. cp = 0.8 kJ/kg.K. cv = 0.5 kJ/kg.K), determine: 3pt) the mass of the gas, m (kg) = (9pt) the work transfer, W (kl)...

  • 6.50 m A closed, rigid tank contains 5 kg of air initially at 300 K, 1...

    6.50 m A closed, rigid tank contains 5 kg of air initially at 300 K, 1 bar. As illustrated in Fig. P6.50, the tank is in contact with a thermal reservoir at 600 K and heat transfer occurs at the boundary where the temperature is 600 K. A stirring rod transfers 600 kJ of energy to the air. The final temperature is 600 K. The air can be modeled as an ideal gas with cy = 0.733 kJ/kg . K...

  • Please show all your work neatly and use the tables from Fundamentals of Engineering Thermodynamics 8th...

    Please show all your work neatly and use the tables from Fundamentals of Engineering Thermodynamics 8th edition by Michael J Moran, Howard N. Shapiro A volume of 1.92 m of air in a rigid, insulated container fitted with a paddle wheel is initially at 341 K, 6.4 bar. The air receives 739 kJ by work from the paddle wheel. Assuming the ideal gas model with Cv - 0.65 kJ/kg .K determine for the air the amount of entropy produced, in...

  • Problem 6.030 SI Air is compressed adiabatically in a piston-cylinder assembly from 1 bar, 300 K...

    Problem 6.030 SI Air is compressed adiabatically in a piston-cylinder assembly from 1 bar, 300 K to 4 bar, 600 K. The air can be modeled as an ideal gas and kinetic and potential energy effects are negligible. Determine the amount of entropy produced, in kJ/K per kg of air, for the compression. What is the minimum theoretical work input, in kj per kg of air, for an adiabatic compression from the given initial state to a final pressure of...

  • Propane is compressed from an initial state with a pressure of 100 lbf/in2 and a quality...

    Propane is compressed from an initial state with a pressure of 100 lbf/in2 and a quality of 0.40 to a final saturated liquid state with a temperature is 50°F. Is it possible for this process to occur adiabatically? Justify your answer. Air is contained in a rigid, well-insulated container of volume 3 m3. The air undergoes a process from an initial state with a pressure of 200 kPa and temperature of 300 K. During the process, the air receives 720...

  • 1. A rigid (constant volume) tank sealed by a valve initially contains 100 kg of air...

    1. A rigid (constant volume) tank sealed by a valve initially contains 100 kg of air at a pressure of 100 kPa and 300 K. At time t = 0, the valve for the air tank is opened in a controlled manner and air leaks out isothermally (constant temperature) of the tank at a constant mass flow rate of 1 kg/s. The valve is closed after 75 seconds. Answer the following questions: Assuming air is an ideal gas, what is...

  • Problem 6.030 SI Air is compressed adiabatically in a piston-cylinder assembly from 1 bar, 300 K...

    Problem 6.030 SI Air is compressed adiabatically in a piston-cylinder assembly from 1 bar, 300 K to 9 bar, 600 K. The air can be modeled as an ideal gas and kinetic and potential energy effects are negligible. Determine the amount of entropy produced, in kJ/K per kg of air, for the compression. What is the minimum theoretical work input, in kj per kg of air, for an adiabatic compression from the given initial state to a final pressure of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT