Question

Propane is compressed from an initial state with a pressure of 100 lbf/in2 and a quality...

  1. Propane is compressed from an initial state with a pressure of 100 lbf/in2 and a quality of 0.40 to a final saturated liquid state with a temperature is 50°F. Is it possible for this process to occur adiabatically? Justify your answer.

  2. Air is contained in a rigid, well-insulated container of volume 3 m3. The air undergoes a process from an initial state with a pressure of 200 kPa and temperature of 300 K. During the process, the air receives 720 kJ of work from a paddle wheel. Model the air as an ideal gas with constant specific heats. Evaluate the specific heats at 300 K. Neglect changes in kinetic energy and potential energy. Determine the mass of the air in kg, the final temperature of the air in K, and the amount of entropy generated by irreversibilities during the process in kJ/K.

  3. Ammonia is contained in a piston-cylinder assembly. The ammonia undergoes a reversible, isobaric process from an initial pressure of 30 lbf/in2 and volume of 4 ft3/ to a final temperature of 70° F. The mass of ammonia is 0.35 lb. Determine the amount of work done on the ammonia in Btu, the amount of heat transfer to the ammonia in Btu, and the temperature at which the heat transfer occurs in °F. Assume that the heat transfer occurs at a constant temperature. Neglect changes in kinetic energy and potential energy.

  4. An ideal gas is contained in a piston-cylinder assembly. The gas undergoes an isothermal expansion from an initial state with pressure of 0.5 MPa and temperature of 600 K to a final state with a pressure of 0.4 MPa. Heat transfer from the surroundings occurs at a temperature of 900 K. The ideal gas has a molar mass of 28 kg/kmol and a specific heat at constant volume of 0.78 kJ/(kg∙K). Determine the amount of specific work done on the gas in kJ/kg, the amount of specific heat transfer to the gas in kJ/kg, and the amount of specific entropy generated by irreversibilities during the process in kJ/(kg∙K). Neglect changes in kinetic energy and potential energy.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

please note, expert are allowed to solve only one question in case of multiple questions as HOMEWORKLIB RULES honour code. Please upload question again and mention question no.

Add a comment
Know the answer?
Add Answer to:
Propane is compressed from an initial state with a pressure of 100 lbf/in2 and a quality...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Ammonia is contained in a piston-cylinder assembly. The ammonia undergoes a reversible, isobaric process from an...

    Ammonia is contained in a piston-cylinder assembly. The ammonia undergoes a reversible, isobaric process from an initial pressure of 30 lbf/in2 and volume of 4 ft3/lb to a final temperature of 70° F. The mass of ammonia is 0.35 lb. Determine the amount of work done on the ammonia in Btu, the amount of heat transfer to the ammonia in Btu, and the temperature at which the heat transfer occurs in °F. Assume that the heat transfer occurs at a...

  • 1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure...

    1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure of 5.1 bar to a pressure of 2.7 bar. Evaluate the work, in kJ/kg. 2.Nitrogen (N2) contained in a piston–cylinder arrangement, initially at 9.3 bar and 437 K, undergoes an expansion to a final temperature of 300 K, during which the pressure–volume relationship is pV1.1 = constant. Assuming the ideal gas model for the N2, determine the heat transfer in kJ/kg. 3.Argon contained in...

  • A quantity of a certain perfect gas is compressed from an initial state of 0.085 m3,...

    A quantity of a certain perfect gas is compressed from an initial state of 0.085 m3, 1 bar to a final state of 0.034 m3, 3.9 bar. The specific heat at constant volume is 0.724 kJ/kg×K, and the specific heat at constant pressure is 1.020 kJ/kg×K. The observed temperature rise is 146K. Calculate the specific gas constant, R, the mass of gas present, and the internal energy of the gas.

  • 1.Argon contained in a closed, rigid tank, initially at 62.3°C, 3.9 bar, and a volume of...

    1.Argon contained in a closed, rigid tank, initially at 62.3°C, 3.9 bar, and a volume of 4.2 m3, is heated to a final pressure of 9.4 bar. Assuming the ideal gas model with k = 1.6 for the argon, determine the heat transfer, in kJ. 2.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 223°C from a pressure of 5.4 bar to a pressure of 1.9 bar. Evaluate the work, in kJ/kg. 3.A mass of 4 kilograms...

  • 35% Air (udara) is compressed in an axial flow compressor operating at steady state from 27°C,...

    35% Air (udara) is compressed in an axial flow compressor operating at steady state from 27°C, 1 bar to a pressure of 4,41 bar. The work input required is 96,23 kJ/kg of air flowing through the compressor. Heat transfer from the compressor occurs at the rate of 15,65 kJ/kg at the surface of the compressor where the temperature is 40'C. Kinetic and potential energy changes can be ignored. Assuming air as an ideal gas with constant specific heat, cp =...

  • Steam enters a turbine operating at steady state at 700oF and 450 lbf/in2 and leaves as...

    Steam enters a turbine operating at steady state at 700oF and 450 lbf/in2 and leaves as a saturated vapor at 0.8 lbf/in2. The turbine develops 12,000 hp, and heat transfer from the turbine to the surroundings occurs at a rate of 2 x 106 Btu/h. Neglect kinetic and potential energy changes from inlet to exit. Determine the exit temperature, in oF, and the volumetric flow rate of the steam at the inlet, in ft3/s.

  • 4. An ideal gas with constant specific heats undergoes a process from an initial pressure of...

    4. An ideal gas with constant specific heats undergoes a process from an initial pressure of 50 kPa and initial specific volume of 4 m^3/kg to a final pressure of 80 kPa and final specific volume of 5 m^3/kg. The mass of the carbon monoxide is 3 kg. The gas has a molar mass of 44 kg/kmol and a specific heat at constant volume of 0.98 kJ/(kg∙K). Determine the entropy change of the gas during the process in kJ/K.

  • A piston-cylinder assembly fitted with a slowly rotating paddle wheel contains 0.19 kg of air, initially...

    A piston-cylinder assembly fitted with a slowly rotating paddle wheel contains 0.19 kg of air, initially at 300 K. The air undergoes a constant-pressure process to a final temperature of 440 K. During the process, energy is gradually transferred to the air by heat transfer in the amount 12 kJ. Assuming the ideal gas model with k = 1.4 and negligible changes in kinetic and potential energy for the air, determine the work done by the paddle wheel on the...

  • A piston–cylinder assembly fitted with a slowly rotating paddle wheel contains 0.19 kg of air, initially...

    A piston–cylinder assembly fitted with a slowly rotating paddle wheel contains 0.19 kg of air, initially at 300 K. The air undergoes a constant-pressure process to a final temperature of 420 K. During the process, energy is gradually transferred to the air by heat transfer in the amount 12 kJ. Assuming the ideal gas model with k = 1.4 and negligible changes in kinetic and potential energy for the air, determine the work done by the paddle wheel on the...

  • Air enters a compressor operating at steady state at a pressure of 100 kPa, a temperature...

    Air enters a compressor operating at steady state at a pressure of 100 kPa, a temperature of 290 K, and with a mass flow rate of 0.72 kg/s. At the exit, the pressure is 700 kPa and the temperature is 450 K. Heat transfer from the compressor to its surroundings occurs at a rate of 3 kW. Kinetic and potential energy changes can be ignored. Determine the power input to the compressor, in kW. Assume that the air is an...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT