Question

3.2 Pre-Lab Assignment When deriving the governing equations for an electromechanical system, it is often beneficial to exami

3.1 Background The Quanser QUBE-Servo is a direct-drive rotary servo system. Its motor armature circuit schematic is shown in

0 0
Add a comment Improve this question Transcribed image text
Answer #1

să ost Aprying WUL VG+)= iR + Lai + elect) VCE) picty Ochet Taking Labalate on both sich LVCH) = LUR) + Llei + Lecct) ves) -potting value of 7(s) in ean ez _ Sport Jug 4 Ja) s+ DJ wcs) = M [WG) - WoW6) 7 (3m+ JHtId=J] W(S) [JS+D+ NE No 7 = kq ves) R

Add a comment
Know the answer?
Add Answer to:
3.2 Pre-Lab Assignment When deriving the governing equations for an electromechanical system, it is often beneficial...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider the electromechanical dynamic system shown in Figure 1(a). It consists of a cart of mass...

    This assignment is for my Engr dynamics systems class. Consider the electromechanical dynamic system shown in Figure 1(a). It consists of a cart of mass m moving without slipping on a linear ground track. The cart is equipped with an armature-controlled DC motor, which is coupled to a rack and pinion mechanism to convert the rotational motion to translation and to create the driving force for the system. Figure 1(b) shows the simplified equivalent electric circuit and the mechanical model...

  • Problem-5 (20 pts): Consider the DC servo motor shown in Figure-5. Assume that the input of the s...

    Problem-5 (20 pts): Consider the DC servo motor shown in Figure-5. Assume that the input of the system is the applied armature voltage ea and the output is the load shaft position θ2. Assume also the following numerical values for the components: Ra-) Armature winding resistance = 0.2Ω La → Armature winding inductance = 0.1 mH Kb-) Back emf constant 0.05 Vs/rad K > Motor torque constant 0.06 Nm/A Jr Moment of inertia of the rotor of the motor =...

  • Consider the system given below. The output is y(displacement from equilibrium position) and the input is...

    Consider the system given below. The output is y(displacement from equilibrium position) and the input is V. (source voltage). The motor has an electrical constant Ke, a torque constant K, an armature inductance Lg and a resistance R. The rotor, shaft and disk together have inertia J and a viscous friction coefficient B. The disk has a radius ofr. (For the motor, assume that the torque is T = Ki,, and the back EMF is emf = KO). a. Derive...

  • Show a sketch clearly labeling all of the voltages and currents, and determine the governing differential...

    Show a sketch clearly labeling all of the voltages and currents, and determine the governing differential equation as indicated. please show steps 6. The electro-mechanical system shown below consists of an electric motor with input voltage V which drives inertia I in the mechanical system (see torque T). Find the governing differential equations of motion for this electro-mechanical system in terms of the input voltage to the motor and output displacement y. Electrical System Vbas -Motor Motor Input Voltage bMotor...

  • The questions are at the bottom. I posted this previously without the information at the top and ...

    The questions are at the bottom. I posted this previously without the information at the top and the answer was missing some key information. Consider the electromechanical dynamic system shown in Figure 1(a). It consists of a cart of mass m moving without slipping on a linear ground track. The cart is equipped with an armature-controlled DC motor, which is coupled to a rack and pinion mechanism to convert the rotational motion to translation and to create the driving force...

  • Q 1- 08 Pts) Figure below is a diagram of a DC motor connected in parnllel to a current source i,...

    Q 1- 08 Pts) Figure below is a diagram of a DC motor connected in parnllel to a current source i,. The torque and back-EMF constants of the motor are Ko K respectively, the motor resistance is R, also modeled as connected in parallel, the motor inertia is 1- (not shown), and the motor inductance is negligible. The motor load is an inertia J with compliance (stiffness) K and viscous friction coefficient b, and it is attached a gear pair...

  • u(t) ta(t) e(t) A DC motor is a electro-mechanical system, where mechanical motor is coupled with...

    u(t) ta(t) e(t) A DC motor is a electro-mechanical system, where mechanical motor is coupled with an electrical circuit. The motor shows up in the circuit equation as a voltage loss proportional to the motor speed, and the electrical system shows up as the input torque proportional to the armatura current DC motor equations are given by dw(t) dialt) where J is the mass moment of inertia in kg-m2, b is the damping coefficient in N-m-s, K is the motor...

  • 43 Questions 1. Using Figure 4-2, determine the electrical relationship characterizing a standard DC motor. Express...

    43 Questions 1. Using Figure 4-2, determine the electrical relationship characterizing a standard DC motor. Express the relationship in the Laplace domain. L. i,o, M ry Figure 4-2 DC Motor Electric Circuit 2. Determine and evaluate the motor electrical time constant, τ.. This is done by assuming that the shaft is stationary. You can find the parameters of the motor in Table B-1. 3. Assume τ. is negligible and simplify the motor electrical relationship determined in question 1. What is...

  • 01- (08 Pts) Figure below is a diagram of a DC motor connected in parallel to...

    01- (08 Pts) Figure below is a diagram of a DC motor connected in parallel to a current source is the torque and back-EMF constants of the motor are K. K respectively, the motor resistance is R, also modeled as connected in parallel, the motor inertia is I. (not shown), and the motor inductance is negligible. The motor load is an inertia compliance (stiffness) K and viscous friction coefficient b, and it is attached to the motor via a gear...

  • 1. Consider a schematic diagram of the permanent magnet brushed DC motor used in Quanser system...

    1. Consider a schematic diagram of the permanent magnet brushed DC motor used in Quanser system with two inertia loads (Jh and J4) and no viscous damping as shown in Fig. 2-1.. Since there is no gear system, motor shaft angular position and velocity, 0m, and wm, respectively, are equal to disc load angular position and velocity 0, and w, respectively. Derive electrical and mechanical differential equations describing this DC motor dynamics, as well as the relationship between motor torque...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT