Question

Problem 3.28 a) In outer space, far from other objects, block 1 of mass 42 kg is at position < 14 0 m, and gravitational force acting on block 2 due to block 1? It helps to make a sketch of the situation. block 2 of mass 1300 kg is located at position <21, 1 .0) m. Whats the ector >N grav< b) At 4.1 seconds after noon both blocks were at rest at the positions given above. At 4.8 seconds afternoon what is p2= < e vector momentum of loc >kg-m/s (c) At 4.8 seconds after noon, what is the (vector) momentum of block 1? > kg-m/s (d) At 4.8 seconds after noon, which one of the following statements is true? Block 1 is moving faster than block 2. Block 1 and block 2 have the same speed Block 2 is moving faster than block 1

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Problem 3.28 a) In outer space, far from other objects, block 1 of mass 42 kg...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (a) In outer space, far from other objects, block 1 of mass 33 kg is at...

    (a) In outer space, far from other objects, block 1 of mass 33 kg is at position <11, 10, 0> m, and block 2 of mass 1250 kg is located at position <20, 10, 0> m. What is the (vector) gravitational force acting on block 2 due to block 1? It helps to make a sketch of the situation. F→grav= < , , > N (b) At 4.1 seconds after noon both blocks were at rest at the positions given...

  • a)In outer space, far from other objects, block 1 of mass 61 kg is at position...

    a)In outer space, far from other objects, block 1 of mass 61 kg is at position <14, 14, 0> m, and block 2 of mass 1600 kg is located at position <16, 14, 0> m. What is the (vector) gravitational force acting on block 2 due to block 1? It helps to make a sketch of the situation. (b) At 4.1 seconds after noon both blocks were at rest at the positions given above. At 4.6 seconds after noon, what...

  • Problem 3.28 Your answer is partially correct. Try again (a) In outer space, far from other...

    Problem 3.28 Your answer is partially correct. Try again (a) In outer space, far from other objects, block 1 of mass 56 kg is at position $9, 7, 0x m, and block 2 of mass 1450 kg is located at postion <14, 7, 0> m. What is the ( acting on block 2 due to block 17 It helps to make a sketch of the situation. were at rest at the positions given above. At 4.8 Seconds after noon, what...

  • Chapter 09, Problem 059 In the figure, block 1 (mass 3.7 kg) is moving rightward at...

    Chapter 09, Problem 059 In the figure, block 1 (mass 3.7 kg) is moving rightward at 6.5 ms and block 2 (mass 4.1 kg) is moving rightward at 1.0 m/s. The surface is frictionless, and a spring with a spring constant of k=860 N/m is fixed to block 2. When the blocks collide, the compression of the spring is maximum at the instant the blocks have the same velocity. Find the maximum compression. irono Number Units The number of significant...

  • Block 1 (mass 2.00 kg) is moving rightward at 10.0 m/s and block 2 (mass 5.00...

    Block 1 (mass 2.00 kg) is moving rightward at 10.0 m/s and block 2 (mass 5.00 kg) is moving rightward at 3.00 m/s. The surface is frictionless, and a spring with a spring constant of 1120 N/m is fixed to block 2. When the blocks collide, the compression of the spring is maximum at the instant the blocks have the same velocity. (a) Find the maximum compression. (b) Find the final velocities of the two blocks.

  • 1) Block A started on the left, and block B on the right. The two moved...

    1) Block A started on the left, and block B on the right. The two moved towards the middle and collided.The image above depicts the result of the two blocks colliding. A) What is the total initial momentum of the blocks? B) What is the total final momentum of the blocks? C) What is the total initial kinetic energy of the blocks? D) What is the total final kinetic energy of the blocks? 2) What type of collision is this?...

  • Block A in (Figure 1) has mass 1.00 kg, and block B has mass 3.00 kg....

    Block A in (Figure 1) has mass 1.00 kg, and block B has mass 3.00 kg. The blocks are forced together, compressing a spring S between them; then the system is released from rest on a level, frictionless surface. The spring, which has negligible mass, is not fastened to either block and drops to the surface after it has expanded. The spring has force constant 711 N/m and is initially compressed 0.225 m from its original length. a.What is the...

  • A Two-Body Collision with a Spring A block of mass m,-1.9 kg initially moving to the...

    A Two-Body Collision with a Spring A block of mass m,-1.9 kg initially moving to the right with a speed of 3.2 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 - 3.9 kg initially moving to the left with a speed of 1.8 m/s as shown in figure (a). The spring constant is 505 N/m in A moving block collides with another moving block with a spring attached: (a) before...

  • Block 1 (0.5 kg) travels with an initial velocity of [ 60i ] + [ 60j...

    Block 1 (0.5 kg) travels with an initial velocity of [ 60i ] + [ 60j ] m/s and then collides with block 2 (0.5 kg) traveling with an initial velocity of [ -60i ] + [ -60j ] m/s. After the collision, block 1 has a final momentum of [ 0i ] + [ -20j ] kg*m/s. Assume that no external forces are present and therefore the momentum for the system of blocks is conserved. What is the total...

  • A block of mass m1 = 1.0 kg initially moving to the right with a speed...

    A block of mass m1 = 1.0 kg initially moving to the right with a speed of 3.2 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 3.4 kg initially moving to the left with a speed of 2.6 m/s as shown in figure (a). The spring constant is 530N/m. (A) Find the velocities of the two blocks after the collision. (B) During the collision, at the instant block 1...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT