Question

A heat engine using a monatomic gas follows the cycle shown in the pV diagram. P11 The gas starts out at point 1 with a volum

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution monoa tomwc Яob T,31K 31g c3 V4 Cv 12.5 mal K for process 1 -2 - far monoatomc iocharic Y .66 process r adiabatc Paonow, Р. V - R T 3 Р. 318 х 10 а 1.89 х 10 1890 к Ра 3 в hu8u. 8 Cmi now, 1 (В% Вyg) -y (143 х иевея 1890х 318 -66 423.330 Tex

Add a comment
Know the answer?
Add Answer to:
A heat engine using a monatomic gas follows the cycle shown in the pV diagram. P11...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A heat engine using a monatomic gas follows the cycle shown in the pVpV diagram. The...

    A heat engine using a monatomic gas follows the cycle shown in the pVpV diagram. The gas starts out at point 1 with a volume of V1=233 cm3,V1=233 cm3, a pressure of p1=147 kPa,p1=147 kPa, and a temperature of 317 K.317 K. The gas is held at a constant volume while it is heated until its temperature reaches 395 K395 K (point 2). The gas is then allowed to expand adiabatically until its pressure is again 147 kPa147 kPa (point...

  • A heat engine using a diatomic gas follows the cycle shown in the PkPa pV diagram...

    A heat engine using a diatomic gas follows the cycle shown in the PkPa pV diagram to the right. The gas starts out at point 1 with a volume of 318 cm3, a pressure of 147 kPa, and a temperature of 317 K. The gas is held at a constant volume while it is heated until its temperature reaches 395 K (poi 2). The gas is then allowed to expand adiabatically until its pressure is again 147 kPa (point 3)...

  • 2. Isochoric/Adiabatic/Isobaric Cycle (10 pts) A heat engine using a monatomic gas follows the cycle shown in the PV diagram to the right. Between stages 1 and 2 the gas is at a constant volume,...

    2. Isochoric/Adiabatic/Isobaric Cycle (10 pts) A heat engine using a monatomic gas follows the cycle shown in the PV diagram to the right. Between stages 1 and 2 the gas is at a constant volume, and between 2 and 3 no heat is transferred in or out, between 3 and 1 the pressure is held constant (a) For each stage of this process, calculate in Joules the heat, Q, transferred to the gas, and the work, W, done by the...

  • A heat engine with 0.227 moles of a monatomic gas undergoes the cyclic procedure shown in...

    A heat engine with 0.227 moles of a monatomic gas undergoes the cyclic procedure shown in the pV diagram on the right. Between stages 3 and 1 the gas is at a constant temperature, and between 2 and 3 no heat is transferred in or out. The temperature of the gas at stage 2 is 375 K. p [kPa 525 What is the type of each process in the cycle? Between 1 and 2 is Select answer Between 2 and...

  • An ideal monatomic gas undergoes changes in pressure and volume, as shown in the pV diagram...

    An ideal monatomic gas undergoes changes in pressure and volume, as shown in the pV diagram below. The initial volume is 0.02 m3 and the final volume is 0.10 m3 20 10 01 (a) Calculate the magnitude, or absolute value, of the Work done on the gas in this process. (Be careful with units. Your answer should be in Joules. 1 atm 1.013x 105 Pa.) (b)The work done ON the gas is: O positive O negative (c) The initial temperature...

  • A heat engine takes 0.262 mol of a diatomic deal gas around the cycle shown in the pV-diagram bel...

    A heat engine takes 0.262 mol of a diatomic deal gas around the cycle shown in the pV-diagram below. Process 1 → 2 is at constant volume, process 2-) 3 is adiabatic, and process 3-1 is at a constant pressure of P = 2.00 atm. The value of r for this gas is 1.4 2,7-600K T,-300 K T, 492 K 0 (a) Find the pressure and volume at points 1, 2, and 3. pressure (Pa) volume (m3) point 1 point...

  • A 0.450-mol sample of an ideal diatomic gas at 372 kPa and 312 K expands quasi-statically

    A 0.450-mol sample of an ideal diatomic gas at 372 kPa and 312 K expands quasi-statically until the pressure decreases to 147 kPa. Find the final temperature and volume of the gas, the work done by the gas, and the heat absorbed by the gas if the expansion is the following. (a) Isothermal final temperature _______  volume of the gas _______  work done by the gas _______  heat absorbed _______  (b) adiabatic final temperature _______  volume of the gas _______  work done by the gas _______  heat absorbed _______ 

  • An engine works on the cycle shown in the diagram below, using 0.1 moles of a...

    An engine works on the cycle shown in the diagram below, using 0.1 moles of a monatomic ideal gas. The processes A, B and C are isothermal, isovolumetric and adiabatic respectively. The maximum and minimum volumes are 8 litres and 2 litres, and the temperatures are as shown on the diagram. T=1000K Pressure (kPa) T=397K 0 8 2 4 6 Volume (litres) a) b) c) d) e) Calculate the work done on the gas in processes A and B. Calculate...

  • Please answer the two blank boxes! A heat engine with 0.227 moles of a monatomic gas...

    Please answer the two blank boxes! A heat engine with 0.227 moles of a monatomic gas undergoes the cyclic procedure shown in the pV diagram on the right. Between stages 3 and 1 the gas is at a constant temperature, and between 2 and 3 no heat is transferred in or out. The temperature of the gas at stage 2 is 375 K. kPa What is the type of each process in the cycle? Between 1 and 2 isisochoric Between...

  • 102) 2.37 moles of an ideal monatomic gas initially at 255 K undergoes this cycle: It...

    102) 2.37 moles of an ideal monatomic gas initially at 255 K undergoes this cycle: It is (1) heated at constant pressure to 655 K, (2) then allowed to cool at constant volume until its temperature returns to its initial value, (3) then compressed isothermally to its initial state. Find: a. the net energy transferred as heat to the gas (excluding the energy transferred as heat out of the gas). b. the net work done by the gas for the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT