Question

4. [201 At 500 K, we have the data of standard enthalpy of formation and standard entropy of formation as follows: AH° (kJ/mo

0 0
Add a comment Improve this question Transcribed image text
Answer #1

TE SOO K I2 2H 500k Gpatane GPeacduch AG CHI)(H2+I2) HP Fran talle 2 (32.41)-(S.88* kueren) 69.75 AHO HI= 32.41 6u-82 T.63 17de SPL (Soa) (a-68) L0.8) KIOS I19650 ACG -9.650 KJ mol Theumedyremc Surle Borunn Constat, K dA -RT. ln (K) e 19.65 8.J14 x5de SPL (Soa) (a-68) L0.8) KIOS I19650 ACG -9.650 KJ mol Theumedyremc Surle Borunn Constat, K dA -RT. ln (K) e 19.65 8.J14 x51-X1-hagh Total Mode 1 2 (2x) K-C+z72 => X 0.842 No molas Pladocad =27 2 0.847 r 1684 mol mole Prabces (684 1 O- 842 (atm. fu245 Total mu eD t-t k . 112,95 2 710-627 62 581.S xて 53135 -4.208 0 12-677 Mde 2x 4.208 8 8.4160 Tmole fectin 8.4160 O 8416 O

Add a comment
Know the answer?
Add Answer to:
4. [201 At 500 K, we have the data of standard enthalpy of formation and standard...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (1). The equilibrium constant, Kp, for the following reaction is 1.80×10-2 at 698K. 2HI(g) =H2(g) +...

    (1). The equilibrium constant, Kp, for the following reaction is 1.80×10-2 at 698K. 2HI(g) =H2(g) + I2(g) If an equilibrium mixture of the three gases in a 15.5 L container at 698K contains HI at a pressure of 0.399 atm and H2 at a pressure of 0.562 atm, the equilibrium partial pressure of I2 is  atm. (2). Consider the following reaction: PCl5(g) =PCl3(g) + Cl2(g) If 1.17×10-3 moles of PCl5, 0.217 moles of PCl3, and 0.351 moles of Cl2 are at...

  • The equilibrium constant, Kc, for the following reaction is 83.3 at 500 K. PCl3(g) + Cl2(g)...

    The equilibrium constant, Kc, for the following reaction is 83.3 at 500 K. PCl3(g) + Cl2(g) = PCl5(g) Calculate the equilibrium concentrations of reactant and products when 0.249 moles of PCl3 and 0.249 moles of Cl2 are introduced into a 1.00 L vessel at 500 K.   [PCl3] = M [Cl2] = M [PCl5] = M The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) = H2(g) + I2(g)   Calculate the equilibrium concentrations of reactant and...

  • The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) ----> H2(g)...

    The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) ----> H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.306 M HI, 4.10×10-2 M H2 and 4.10×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 0.208 mol of HI(g) is added to the flask? [HI]   = ______ M [H2]   = ______ M [I2]   = ______M

  • The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) +...

    The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.319 M HI, 4.27×10-2 M H2 & 4.27×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 0.224 mol of HI(g) is added to the flask? [HI] = M [H2] = M [I2] = M please help me!

  • The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) ⇌H2(g) +...

    The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) ⇌H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.320 M HI,   4.29×10-2 M H2 and 4.29×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 0.233 mol of HI(g) is added to the flask? [HI] = ___M [H2] = ___ M [I2] = ___M

  • The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) goes to...

    The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) goes to H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.308 M HI, 4.14×10-2 M H2 and 4.14×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 2.67×10-2 mol of I2(g) is added to the flask? [HI] = __M [H2] = __M [I2] = __M

  • The equilibrium constant, Kc, for the following reaction is 55.6 at 698 K: H2(g) + I2(g)...

    The equilibrium constant, Kc, for the following reaction is 55.6 at 698 K: H2(g) + I2(g) ---------->2HI(g) 1) Calculate the equilibrium concentrations of reactants and product when 0.309 moles of H2 and 0.309 moles of I2 are introduced into a 1.00 L vessel at 698 K. [H2] = M? [I2] = M? [HI] = M? 2.The equilibrium constant, K, for the following reaction is 1.20×10-2 at 500 K: PCl5(g)------->PCl3(g) + Cl2(g) An equilibrium mixture of the three gases in a...

  • The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) +...

    The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.302 M HI, 4.05×10-2 M H2 and 4.05×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 0.203 mol of HI(g) is added to the flask?

  • The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) +...

    The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.329 M HI, 4.41×10-2 M H2 and 4.41×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 2.54×10-2 mol of H2(g) is added to the flask? [HI] = M [H2] = M [I2] = M

  • The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) +...

    The equilibrium constant, K, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) H2(g) + I2(g) An equilibrium mixture of the three gases in a 1.00 L flask at 698 K contains 0.316 M HI, 4.24×10-2 M H2 and 4.24×10-2 M I2. What will be the concentrations of the three gases once equilibrium has been reestablished, if 3.21×10-2 mol of I2(g) is added to the flask?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT