Question

A pendulum of length L = 1.0 meter and bob with mass m = 1.0 kg is released from rest at an angle 0 = 30 from the vertical.
At the location where the box would have struck the floor, now a small cart of mass M = 3.0 kg and negligible height is place
0 0
Add a comment Improve this question Transcribed image text
Answer #1

ginen length of Penduliam L=1m, mass of bobinally 6 -30°, мызғЯ кг 6-05м ярния стилот е От4%. mg, L(1-us p) - іт в ЧТL-LCos0

Add a comment
Know the answer?
Add Answer to:
A pendulum of length L = 1.0 meter and bob with mass m = 1.0 kg...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A pendulum consists of a 1.9-kg bob attached to a light 2.3-m-long string. While hanging at...

    A pendulum consists of a 1.9-kg bob attached to a light 2.3-m-long string. While hanging at rest with the string vertical, the bob is struck a sharp horizontal blow, giving it a horizontal velocity of 4.1 m/s. At the instant the string makes an angle of 30° with the vertical, calculate the following: speed= 3.28 m/s gravitational potential energy is 5.739 J what is the tension in the string in Newtons? what is the angle of the string with the...

  • A pendulum consists of a 1.7-kg bob attached to a light 2.6-m-long string. While hanging at...

    A pendulum consists of a 1.7-kg bob attached to a light 2.6-m-long string. While hanging at rest with the string vertical, the bob is struck a sharp horizontal blow, giving it a horizontal velocity of 5.0 m/s. At the instant the string makes an angle of 28° with the vertical, calculate the following (a) the speed m/s (b) the gravitational potential energy (relative to its value is at the lowest point) (c) the tension in the string? (d) What is...

  • A pendulum bob, with mass 1.60 kg, is held at rest initially in a horizontal position...

    A pendulum bob, with mass 1.60 kg, is held at rest initially in a horizontal position as shown. The string has negligible mass and a length of 1.20 m. The bob is then released from rest. It swings down and collides with a block of mass 2.40 kg initially at rest. Ignore air resistance. a) Use the Principle of Conservation of Mechanical Energy to find the speed of the pendulum bob just before the collision. b) (The bob collides with...

  • A pendulum consists of a 2.2-kg bob attached to a light 2.0-m-long string. While hanging at...

    A pendulum consists of a 2.2-kg bob attached to a light 2.0-m-long string. While hanging at rest with the string vertical, the bob is struck a sharp horizontal blow, giving it a horizontal velocity of 4.5 m/s. At the instant the string makes an angle of 27 degree with the vertical, calculate the following: (a) the speed m/s (b) the gravitational potential energy (relative to its value is at the lowest point) J (c) the tension in the string? N...

  • A pendulum consists of a 2.5-kg bob attached to a light 1.2 m-long string. While hanging...

    A pendulum consists of a 2.5-kg bob attached to a light 1.2 m-long string. While hanging at rest with the string vertical, the bob is struck a sharp horizontal blow, giving it a horizontal velocity of 3m/s. At the instant the string makes an angle of 38 degree with the vertical, what is The speed, The tension in the string? What is the angle of the string with the vertical when the bob reaches its greatest

  • 2. (25 pts.) A simple pendulum of length L = 1.0 m, with a mass mp...

    2. (25 pts.) A simple pendulum of length L = 1.0 m, with a mass mp = 5.0 kg at the end, is held at a 90° angle and released from rest. There are also two blocks, A and B with masses ma = 10 kg and mb = 15 kg, at rest on a horizon- tal, frictionless surface. After the release, the pendulum collides elastically with block A, which in turn collides completely/perfectly inelastically with block B. a. Immediately...

  • A simple pendulum with mass m = 2.3 kg and length L = 2.62 m hangs...

    A simple pendulum with mass m = 2.3 kg and length L = 2.62 m hangs from the ceiling. It is pulled back to an small angle of θ = 9.2° from the vertical and released at t = 0. 1) What is the period of oscillation? 2) What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? 3) What is the maximum speed of the pendulum? 4) What is the angular displacement...

  • A simple pendulum with mass m = 2.1 kg and length L = 2.79 m hangs...

    A simple pendulum with mass m = 2.1 kg and length L = 2.79 m hangs from the ceiling. It is pulled back to a small angle of θ = 11.5° from the vertical and released at t = 0. 1) What is the period of oscillation? 2) What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? 3) What is the maximum speed of the pendulum? 4) What is the angular displacement...

  • A simple pendulum with mass m = 2.1 kg and length L = 2.3 m hangs...

    A simple pendulum with mass m = 2.1 kg and length L = 2.3 m hangs from the ceiling. It is pulled back to an small angle of θ = 11.9° from the vertical and released at t = 0. 1)What is the period of oscillation? 2)What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? 3)What is the maximum speed of the pendulum? 5)What is the magnitude of the tangential acceleration as...

  • A simple pendulum with mass m = 1.8 kg and length L = 2.77 m hangs...

    A simple pendulum with mass m = 1.8 kg and length L = 2.77 m hangs from the ceiling. It is pulled back to an small angle of θ = 9° from the vertical and released at t = 0. 1) What is the period of oscillation? Answer= 3.34 s 2) What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? Answer= 2.76 N 3) What is the maximum speed of the pendulum?...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT