Question

2. (25 pts.) A simple pendulum of length L = 1.0 m, with a mass mp = 5.0 kg at the end, is held at a 90° angle and released f

0 0
Add a comment Improve this question Transcribed image text
Answer #1

e du a due to Toroue gravity immediately after release - 6 Mg = mg L = 5x98x1 fegnant Dinection in out of page Loss in apE =

Add a comment
Know the answer?
Add Answer to:
2. (25 pts.) A simple pendulum of length L = 1.0 m, with a mass mp...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A pendulum of a mass mp = 3.60 kg hanging at the bottom end of a...

    A pendulum of a mass mp = 3.60 kg hanging at the bottom end of a massless rod of length ℓ = 0.60 m has a frictionless pivot at its top end. As shown in the above figure, a bullet of mass mb = 0.50 kg, moving with a horizontal velocity vb, impacts the pendulum and becomes embedded. The pendulum then swings to rest at its topmost position converting all of its kinetic energy into potential energy. (a) Use the...

  • A pendulum of length L = 1.0 meter and bob with mass m = 1.0 kg...

    A pendulum of length L = 1.0 meter and bob with mass m = 1.0 kg is released from rest at an angle 0 = 30' from the vertical. When the pendulum reaches the vertical position, the bob strikes a mass M= 3.0 kg that is resting on a frictionless table that has a height h = 0.85m. (a). When the pendulum reaches the vertical position, calculate the speed of the bob just before it strikes the box. (6 marks]...

  • A 1.9-kg ball is attached to the end of a 2.6-m string to form a pendulum....

    A 1.9-kg ball is attached to the end of a 2.6-m string to form a pendulum. This pendulum is released from rest with a string horizontal. At the lowest point in its swing when it is moving horizontally, the ball collides elastically with a 2.5-kg block initially at rest on a horizontal frictionless surface. What is the speed of the block just after the collision? Show all the important physics steps.

  • A pendulum, consisting of a ball of mass m on a light string of length 1.00...

    A pendulum, consisting of a ball of mass m on a light string of length 1.00 m, is swung back to a 45° angle and released from rest. The ball swings down and, at its lowest point, collides with a block of mass 2mthat is on a frictionless horizontal surface. Note that you will most likely get different numbers for the different parts below. As usual, a good way to handle that is to solve the problem using variables, and...

  • A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a...

    A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.900 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...

  • A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a...

    A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.900 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...

  • Block A of mass mA is moving horizontally with speed Va along a frictionless surface

     Block A of mass mA is moving horizontally with speed Va along a frictionless surface. It collides elastically with block B of mass mB that is initially at rest. After the collision block B enters a rough surface at x =0 with a coefficient of kinetic friction that increases linearly with distance μ(x) = bx for 0 ≤ x ≤ d, where b is a positive constant. At x=d block B collides with an unstretched spring with spring constant k...

  • A block with mass M = 5.95 kg is sliding in the positive x-direction at Vi...

    A block with mass M = 5.95 kg is sliding in the positive x-direction at Vi = 8.90 m/s on a frictionless surface when it collides elastically in one dimension with a stationary block with mass m = 1.30 kg. Determine the velocities, Vf and vf, of the objects after the collision.

  • A pendulum bob, with mass 1.60 kg, is held at rest initially in a horizontal position...

    A pendulum bob, with mass 1.60 kg, is held at rest initially in a horizontal position as shown. The string has negligible mass and a length of 1.20 m. The bob is then released from rest. It swings down and collides with a block of mass 2.40 kg initially at rest. Ignore air resistance. a) Use the Principle of Conservation of Mechanical Energy to find the speed of the pendulum bob just before the collision. b) (The bob collides with...

  • 1. A pendulum of mass m=0.225kg and length 45.0cm is held at an angle 28degrees a)...

    1. A pendulum of mass m=0.225kg and length 45.0cm is held at an angle 28degrees a) neglecting any air resistance and the mass of the string, how fast is the pendulum going at the bottom of its motion? b) the pendulum strikes the block (which has mass m=0.650kg) in a perfectly elastic collision. Find the final velocities of the pendulum and the block? c) the block then slides across the floor a distance of 85.0 cm before coming to rest....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT