Problem

It is well known that wind makes the cold air feel much colder as a result of the windchil...

It is well known that wind makes the cold air feel much colder as a result of the windchill effect that is due to the increase in the convection heat transfer coefficient with increasing air velocity. The windchill effect is usually expressed in terms of the windchill factor, which is the difference between the actual air temperature and the equivalent calm-air temperature. For example, a windchill factor of 20°C for an actual air temperature of 5°C means that the windy air at 5°C feels as cold as the still air at –15°C. In other words, a person will lose as much heat to air at 5°C with a windchill factor of 20°C as he or she would in calm air at –15°C.

For heat transfer purposes, a standing man can be modeled as a 30-cm-diameter, 170-cm-long vertical cylinder with both the top and bottom surfaces insulated and with the side surface at an average temperature of 34°C. For a convection heat transfer coefficient of 15 W/m2 · °C, determine the rate of heat loss from this man by convection in still air at 20°C. What would your answer be if the convection heat transfer coefficient is increased to 50 W/m2 · °C as a result of winds? What is the windchill factor in this case?

Step-by-Step Solution

Request Professional Solution

Request Solution!

We need at least 10 more requests to produce the solution.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the solution will be notified once they are available.
Add your Solution
Textbook Solutions and Answers Search