Problem

Tensile PropertiesFor the titanium alloy whose stress–strain behaviour can be observed in...

Tensile Properties

For the titanium alloy whose stress–strain behaviour can be observed in the Tensile Tests module of Virtual Materials Science and Engineering (VMSE) (which is found in WileyPLUS), determine the following:

(a) the approximate yield strength (0.002 strain offset)

(b) the tensile strength

(c) the approximate ductility, in percent elongation

How do these values compare with those for the two Ti-6Al-4V alloys presented in Table B.4 of Appendix B?

Table B.4 Typical Room-Temperature Yield Strength, Tensile Strength, and Ductility (Percent Elongation) Values for Various Engineering Materials

Material/Condition

Yield Strength(MPa [ksi])

Tensile Strength(MPa [ksi])

Percent Elongation

METALS AND METAL ALLOYS

Plain Carbon and Low-Alloy Steels

Steel alloy A36

·         Hot-rolled

220–250 (32–36)

400–500 (58–72.5)

23

Steel alloy 1020

 

 

 

·         Hot-rolled

210 (30) (min)

380 (55) (min)

25 (min)

·         Cold-drawn

350 (51) (min)

420 (61) (min)

15 (min)

·         Annealed (@ 870°C)

295 (42.8)

395 (57.3)

36.5

·         Normalized (@ 925°C)

345 (50.3)

440 (64)

38.5

Steel alloy 1040

·         Hot-rolled

290 (42) (min)

520 (76) (min)

18 (min)

·         Cold-drawn

490 (71) (min)

590 (85) (min)

12 (min)

·         Annealed (@ 785°C)

355 (51.3)

520 (75.3)

30.2

·         Normalized (@ 900°C)

375 (54.3)

590 (85)

28.0

Steel alloy 4140

·         Annealed (@ 815°C)

417 (60.5)

655 (95)

25.7

·         Normalized (@ 870°C)

655 (95)

1020 (148)

17.7

·         Oil-quenched and tempered (@ 315°C)

1570 (228)

1720 (250)

11.5

Steel alloy 4340

·         Annealed (@ 810°C)

472 (68.5)

745 (108)

22

·         Normalized (@ 870°C)

862 (125)

1280 (185.5)

12.2

·         Oil-quenched and tempered (@ 315°C)

1620 (235)

1760 (255)

12

Stainless Steels

Stainless alloy 304

·         Hot-finished and annealed

205 (30) (min)

515 (75) (min)

40 (min)

·         Cold-worked (¼ hard)

515 (75) (min)

860 (125) (min)

10 (min)

Stainless alloy 316

·         Hot-finished and annealed

205 (30) (min)

515 (75) (min)

40 (min)

·         Cold-drawn and annealed

310 (45)(min)

620 (90) (min)

30 (min)

Stainless alloy 405

·         Annealed

170 (25)

415 (60)

20

Stainless alloy 440A

·         Annealed

415 (60)

725 (105)

20

·         Tempered (@ 315°C)

1650(240)

1790 (260)

5

Stainless alloy 17-4PH

·         Annealed

760(110)

1030(150)

8

·         Precipitation-hardened (@ 482°C)

1172 (170)

1310(190)

10

Cast Irons

·         Grade G1800 (as cast)

_

124 (18) (min)

_

·         Grade G3000 (as cast)

207 (30) (min)

·         Grade G4000 (as cast)

276 (40) (min)

Ductile irons

·         Grade 60-40-18 (annealed)

276 (40) (min)

414 (60) (min)

18 (min)

·         Grade 80-55-06 (as cast)

379 (55) (min)

552 (80) (min)

6 (min)

·         Grade 120-90-02 (oil-quenched and tempered)

621 (90) (min)

827 (120) (min)

2 (min)

Aluminium Alloys

Alloy 1100

·         Annealed (O temper)

34 (5)

90(13)

40

·         Strain-hardened (H14 temper)

117 (17)

124 (18)

15

Alloy 2024

·         Annealed (O temper)

75(11)

185 (27)

20

·         Heat-treated and aged (T3 temper)

345 (50)

485 (70)

18

·         Heat-treated and aged (T351 temper)

325 (47)

470 (68)

20

Alloy 6061

·         Annealed (O temper)

55 (8)

124 (18)

30

·         Heat-treated and aged (T6 and T651 tempers)

276 (40)

310(45)

17

Alloy 7075

·         Annealed (O temper)

103 (15)

228 (33)

17

·         Heat-treated and aged (T6 temper)

505 (73)

572 (83)

11

Alloy 356.0

·         As cast

124(18)

164(24)

6

·         Heat-treated and aged (T6 temper)

164(24)

228 (33)

3.5

Copper Alloys

C11000 (electrolytic tough pitch)

·         Hot-rolled

69 (10)

220 (32)

45

·         Cold-worked (H04 temper)

310 (45)

345 (50)

12

C17200 (beryllium–copper)

·         Solution heat-treated

195-380 (28-55)

415-540 (60-78)

35-60

·         Solution heat-treated and aged (@ 330°C)

965-1205 (140-175)

1140-1310(165-190)

4-10

C26000 (cartridge brass)

·         Annealed

75-150(11-22)

300-365 (43.5-53.0)

54-68

·         Cold-worked (H02 temper)

435 (63)

525 (76)

8

C36000 (free-cutting brass)

·         Annealed

125(18)

340 (49)

53

·         Cold-worked (H02 temper)

310 (45)

400 (58)

25

C71500 (copper–nickel, 30%)

·         Hot-rolled

140 (20)

380 (55)

45

·         Cold-worked (H80 temper)

545 (79)

580 (84)

3

C93200 (bearing bronze)

·         Sand cast

125(18)

240 (35)

20

Magnesium Alloys

Alloy AZ31B

·         Rolled

220 (32)

290 (42)

15

·         Extruded

200 (29)

262 (38)

15

Alloy AZ91D

·         As cast

97-150(14-22)

165-230 (24-33)

3

Titanium Alloys

Commercially pure (ASTM grade 1)

·         Annealed

170 (25) (min)

240 (35) (min)

24

Alloy Ti–5Al–2.5Sn

·         Annealed

760(110) (min)

790(115) (min)

16

Alloy Ti–6Al–4V

·         Annealed

830(120) (min)

900 (130) (min)

14

·          Solution heat-treated and aged

1103(160)

1172(170)

10

Precious Metals

Gold (commercially pure)

·         Annealed

nil

130(19)

45

·         Cold-worked (60% reduction)

205 (30)

220 (32)

4

Platinum (commercially pure)

·         Annealed

π13.8 (2)

125-165 (18-24)

30-40

·         Cold-worked (50%)

205-240 (30-35)

1-3

Silver (commercially pure)

·         Annealed

170 (24.6)

44

·         Cold-worked (50%)

296 (43)

3.5

Refractory Metals

·         Molybdenum (commercially pure)

500 (72.5)

630 (91)

25

·         Tantalum (commercially pure)

165 (24)

205(30)

40

·         Tungsten (commercially pure)

760 (110)

960(139)

2

Miscellaneous Nonferrous Alloys

·         Nickel 200 (annealed)

148(21.5)

462(67)

47

·         Inconcl 625 (annealed)

517 (75)

930(135)

42.5

·         Monel 400 (annealed)

240 (35)

550(80)

40

·         Haynes alloy 25

445(65)

970(141)

62

·         Invar (annealed)

276(40)

517 (75)

30

·         Super invar (annealed)

276(40)

483(70)

30

·         Kovar (annealed)

276(40)

517 (75)

30

·         Chemical lead

6-8(0.9-12)

16-19 (23-2.7)

30-60

·         Antimonial lead (6%) (chill cast)

47.2 (6.8)

24

·         Tin (commercially pure)

11(1.6)

57

·         Lcad-tin solder (60Sn-40Pb)

52.5 (7.6)

30-60

Zinc (commercially pure)

·         Hot-rolled (anisotropic)

134-159 (19.4-23.0)

50–65

·         Cold-rolled (anisotropic)

145-186(21-27)

40–50

Zirconium, reactor grade 702

·         Cold-worked and annealed

207 (30) (min)

379 (55) (min)

16 (min)

GRAPHITE, CERAMICS, AND SEMICONDUCTING MATERIALSa

Aluminum oxide

·         99.9% pure

282–551 (41–80)

·         96% pure

358 (52)

·         90% pure

337 (49)

Concreteb

37.3–41.3 (5.4–6.0)

Diamond

 

 

 

·         Natural

1050 (152)

·         Synthetic

800–1400 (116–203

Gallium arsenide

·         {100} orientation, polished surface

66 (9.6)c

·         {100} orientation, as-cut surface

57 (8.3)c

Glass, borosilicate (Pyrex)

69 (10)

Glass, soda–lime

69 (10)

Glass-ceramic (Pyroceram)

123–370 (18–54)

Graphite

·         Extruded (with the grain direction)

13.8–34.5 (2.0–5.0

·         Isostatically molded

31–69 (4.5–10)

Silica, fused

104 (15)

Silicon

·         {100} orientation, as-cut surface

130 (18.9)

·         {100} orientation, laser scribed

81.8 (11.9)

Silicon carbide

·         Hot-pressed

230–825 (33–120)

·         Sintered

96–520 (14–75)

Silicon nitride

·         Hot-pressed

700–1000 (100–150)

·         Reaction-bonded

250–345 (36–5

·         Sintered

414–650 (60–94)

Zirconia, 3 mol% Y2O3 (sintered)

800–1500 (116–218)

POLYMERS

Elastomers

·         Butadiene–acrylonitrile (nitrile)

6.9–24.1 (1.0–3.5)

400–600

·         Styrene–butadiene (SBR)

12.4–20.7 (1.8–3.0)

450–500

·         Silicone

10.3 (1.5)

100–800

Epoxy

27.6–90.0 (4.0–13)

3–6

Nylon 6,6

·         Dry, as molded

55.1–82.8 (8–12)

94.5 (13.7)

15–80

·         50% relative humidity

44.8–58.6 (6.5–8.5)

75.9 (11)

150–300

Phenolic

34.5–62.1 (5.0–9.0)

50–300

Poly(butylene terephthalate) (PBT)

56.6–60.0 (8.2–8.7)

56.6–60.0 (8.2–8.7)

110–150

Polycarbonate (PC)

62.1 (9)

62.8—72.4 (9.1-10.5)

110-150

Polyester (thermoset)

41.4-89.7 (6.0-13.0)

π2.6

Polyetheretherketone (PEEK)

91 (13.2)

70.3—103 (10.2—15.0)

30-150

Polyethylene

·         Low density (LDPE)

9.0—14.5 (1.3—2.1)

8.3—31.4(1.2-4.55)

100-650

·         High density (HDPE)

26.2—33.1 (3.8—4.8)

22.1—31.0 (3.2—4.5)

10-1200

·         Ultra-high-molecular-weight (UHMWPE)

21.4—27.6 (3.1—4.0)

38.6—48.3 (5.6—7.0)

350-525

Poly(ethylene terephthalate) (PET)

59.3 (8.6)

48.3—72.4 (7.0—10.5)

30—300

Poly(methyl methacrylate) (PMMA)

53.8—73.1 (7.8—10.6)

48.3—72.4 (7.0—10.5)

2.0—5.5

Polypropylene (PP)

31.0—37.2 (4.5—5.4)

31.0—41.4 (4.5—6.0)

100—6(X)

Polystyrene (PS)

25.0—69.0 (3.63—10.0)

35.9—51.7 (5.2-7.S)

1.2—2.5

Polytetrafluoroethylene (PTFE)

13.8—15.2 (2.0—2.2)

20.7—34.5 (3.0—5.0)

200—4(X)

Poly(vinyl chloride) (PVC)

40.7—44.8 (5.9—6.5)

40.7—51.7 (5.9—7.S)

40—80

FIBER MATERIALS

Aramid (Kevlar 49)

3600-41(X) (525—6(M))

2.8

Carbon

 

 

 

·         Standard modulus (longitudinal) (PAN precursor)

3800-42(X) (550-610)

2

·         Intermediate modulus (longitudinal) (PAN precursor)

4650-6350 (675-920)

1.8

·         High modulus (longitudinal) (PAN precursor)

2500-4500 (360-650)

0.6

·         Ultra-high modulus (longitudinal) (pitch precursor)

2620-3630 (380-526)

0.30-0.66

E-glass

3450 (500)

4.3

COMPOSITE MATERIALS

Aramid fibers–epoxy matrix (aligned, Vf = 0.6)

·         Longitudinal direction

1380 (200)

 

·         Transverse direction

30 (4.3)

 

High-modulus carbon fibers–epoxy matrix (aligned, Vf = 0.6)

·         Longitudinal direction

760 (110)

0.3

·         Transverse direction

28 (4)

0.4

E-glass fibers–epoxy matrix (aligned, Vf = 0.6)

·         Longitudinal direction

1020 (150)

·         Transverse direction

40 (5.8)

Wood

·         Douglas fir (12% moisture)

 

 

 

Parallel to grain

108 (15.6)

Perpendicular to grain

2.4 (0.35)

·         Red oak (12% moisture)

Parallel to grain

112 (16.3)

Perpendicular to grain

7.2 (1.05)

Step-by-Step Solution

Request Professional Solution

Request Solution!

We need at least 10 more requests to produce the solution.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the solution will be notified once they are available.
Add your Solution
Textbook Solutions and Answers Search