Question

9.77 x10-13 N An electron is accelerated by a potential difference and then travels perpendicular through a magnetic field of 7.20 x 10-1 T where it experiences a magnetic force of 4.1 x 10-13 N. Assuming this electron starts from rest, through what potential difference is the electron accelerated? Fmqve
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ans, The force on the electron F = qvB (the electron travels perpendicular through the magnetic field. Using this relation we find the speed of the electron with which it travels.

Once we know the speed of the electron, we can use conservation of the energy to find the potential difference through which it is accelerated.

of the chare on the electroつ con Sesvalon aE24, potential di ference ) 2 , election starts from the rest 2- 3 の2. 1031036 06 36volts 3 dde rente

Add a comment
Know the answer?
Add Answer to:
9.77 x10-13 N An electron is accelerated by a potential difference and then travels perpendicular through...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An electron is accelerated from rest through a potential difference of 2600 V and then enters...

    An electron is accelerated from rest through a potential difference of 2600 V and then enters a region where there is a uniform 1.40-T magnetic field. a) What is the magnitude of the magnetic force on the electron if it is moving in the direction of the magnetic field? b) What is the magnitude of the magnetic force on the electron if it is moving opposite to the direction of the magnetic field? c) What is the magnitude of the...

  • 2.032 4. An electron is accelerated through potential difference of 150 V from rest and then...

    2.032 4. An electron is accelerated through potential difference of 150 V from rest and then enters a region of uniform magnetic field traveling perpendicular to the field. The magnitude of magnetic field is 0.50 T. a) What is the magnitude of magnetic force acting on the electron (5.8x10-14 N), and b) what is the radius of the path? (8.3x10 m) Note: The mass of electron is 9.11 x 103 kg, and the charge of electron is 1.6x 10-1 C...

  • An electron is accelerated through a potential difference of 2.2 kV and directed into a region...

    An electron is accelerated through a potential difference of 2.2 kV and directed into a region between two parallel plates separated by 20 mm with a potential difference of120 V between them. The electron is moving perpendicular to the electric field when it enters the region between the plates. What magnetic field is necessary perpendicular to both the electron path and the electric field so that the electron travels in a straight line? T

  • 2. An electron is accelerated from rest through a potential difference Δνι-800 V, and enters the...

    2. An electron is accelerated from rest through a potential difference Δνι-800 V, and enters the gap between two parallel plates having a separation d-20 mm and potential difference AVF 100 V. The lower plate is at higher potential than the upper. Assume that the electron's velocity is perpendicular to the electric field vector between the plates (i) (a) Calculate the speed of the electron after it travels through the potential difference of A,-800 V. (b) Draw the electric field...

  • An electron is accelerated from rest through a potential difference of 500 V, then injected into...

    An electron is accelerated from rest through a potential difference of 500 V, then injected into a uniform magnetic field of B= 0.01 T. Once in the magnetic field, it completes half a revolution before hitting the back of the acceleration electrode. Calculate the distance d from the entrance point. Give the answer in the unit mm. B = 0 IX X X con X x x Χ Χ Χ 500 V OV

  • In the figure, an electron accelerated from rest through potential difference V_1 = 1.02 kV enters...

    In the figure, an electron accelerated from rest through potential difference V_1 = 1.02 kV enters the gap between two parallel plates having separation d = 26.5 mm and potential difference V_2= 171 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap?

  • An electron is accelerated from rest by a potential difference of 400 V. It then enters...

    An electron is accelerated from rest by a potential difference of 400 V. It then enters a uniform magnetic field of magnitude 225 mT with its velocity perpendicular to the field. (a) Calculate the speed of the electron. m/s (b) Calculate the radius of its path in the magnetic field. m

  • Electrons (mass m, charge –e) are accelerated from rest through a potential difference V and are...

    Electrons (mass m, charge –e) are accelerated from rest through a potential difference V and are then deflected by a magnetic field B that is perpendicular to their velocity. The radius of the resulting electron trajectory is:

  • In the figure, an electron accelerated from rest through potential difference V_1 = 1.3 kV enters...

    In the figure, an electron accelerated from rest through potential difference V_1 = 1.3 kV enters the gap between two parallel plates having separation 20.0 mm and potential difference V_2 = 200 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap? (Express...

  • A beam of electrons is accelerated through a potential difference of 10 kV before entering a...

    A beam of electrons is accelerated through a potential difference of 10 kV before entering a region having uniform electric and magnetic fields that are perpendicular to each other and perpendicular to the direction in which the electron is moving. If the magnetic field in this region has a value of 0.010 T, what magnitude of the electric field is required if the particles are to be undeflected as they pass through the region?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT