Question

An electron is accelerated from rest through a potential difference of 2600 V and then enters...

An electron is accelerated from rest through a potential difference of 2600 V and then enters a region where there is a uniform 1.40-T magnetic field.

a) What is the magnitude of the magnetic force on the electron if it is moving in the direction of the magnetic field?

b) What is the magnitude of the magnetic force on the electron if it is moving opposite to the direction of the magnetic field?

c) What is the magnitude of the magnetic force on the electron if it is moving perpendicular to the magnetic field?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
An electron is accelerated from rest through a potential difference of 2600 V and then enters...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2.032 4. An electron is accelerated through potential difference of 150 V from rest and then...

    2.032 4. An electron is accelerated through potential difference of 150 V from rest and then enters a region of uniform magnetic field traveling perpendicular to the field. The magnitude of magnetic field is 0.50 T. a) What is the magnitude of magnetic force acting on the electron (5.8x10-14 N), and b) what is the radius of the path? (8.3x10 m) Note: The mass of electron is 9.11 x 103 kg, and the charge of electron is 1.6x 10-1 C...

  • • An electron, at rest, is accelerated through region 1, which has a 5000 V potential difference. It then enters region...

    • An electron, at rest, is accelerated through region 1, which has a 5000 V potential difference. It then enters region 2 where there is only a uniform magnetic field and it undergoes uniform circular motion (in a plane) of radius 0.954 mm. After subtending half a circle, the electron exits region 2, traveling in the opposite direction it was before entering region 2. (a) Draw a physical representation of this situation, complete with the direction of the electric and...

  • 2. An electron is accelerated from rest through a potential difference Δνι-800 V, and enters the...

    2. An electron is accelerated from rest through a potential difference Δνι-800 V, and enters the gap between two parallel plates having a separation d-20 mm and potential difference AVF 100 V. The lower plate is at higher potential than the upper. Assume that the electron's velocity is perpendicular to the electric field vector between the plates (i) (a) Calculate the speed of the electron after it travels through the potential difference of A,-800 V. (b) Draw the electric field...

  • An electron is accelerated from rest by a potential difference of 400 V. It then enters...

    An electron is accelerated from rest by a potential difference of 400 V. It then enters a uniform magnetic field of magnitude 225 mT with its velocity perpendicular to the field. (a) Calculate the speed of the electron. m/s (b) Calculate the radius of its path in the magnetic field. m

  • Chapter 28, Problem 020 An electron is accelerated from rest through potential difference V and then...

    Chapter 28, Problem 020 An electron is accelerated from rest through potential difference V and then enters a region of uniform magnetic field, where it undergoes uniform circular motion. The figure gives the radius r of that motion versus Vi/2. The vertical axis scale is set by rs= 2.7 mm, and the horizontal axis scale is set by Vs1/2= 40.7 Vi/2, What is the magnitude of the magnetic field? V/2 (v/2) (unuu)

  • An electron is accelerated from rest through potential difference V

    An electron is accelerated fromrest through potential difference V and then enters a region of uniform magnetic field, where it undergoes uniform circular motion. Figure 28-37 gives the radius rof that motion versus V1/2.The vertical axis scale is set by rs= 3.9 mm, and the horizontal axis scale is set by Vs1/2= 32.4 V1/2. What is the magnitude of themagnetic field?

  • An electron is accelerated through 2,500 V from rest and then enters a region where there...

    An electron is accelerated through 2,500 V from rest and then enters a region where there is a uniform 1.80 T magnetic field. What are the maximum and minimum magnitudes of the magnetic force acting on this electron? (a) maximum (b) minimum Need Help? LAeadn OIL wenn 8.-12.5 points SerCP10 19 P.009 MI.FB My Notes Ask Your Te A proton moving at 7.60% 106 m/s through a magnetic field of magnitude 1.72 T experiences a magnetic force of magnitude 7.60%...

  • In the figure, an electron accelerated from rest through potential difference V_1 = 1.02 kV enters...

    In the figure, an electron accelerated from rest through potential difference V_1 = 1.02 kV enters the gap between two parallel plates having separation d = 26.5 mm and potential difference V_2= 171 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap?

  • In the figure, an electron accelerated from rest through potential difference V_1 = 1.3 kV enters...

    In the figure, an electron accelerated from rest through potential difference V_1 = 1.3 kV enters the gap between two parallel plates having separation 20.0 mm and potential difference V_2 = 200 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap? (Express...

  • WITCUTELL. In the figure, an electron accelerated from rest through potential difference V1=1.16 kV enters the...

    WITCUTELL. In the figure, an electron accelerated from rest through potential difference V1=1.16 kV enters the gap between two parallel plates having separation d = 27.2 mm and potential difference V = 51.3 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap?...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT