Question

Chapter 28, Problem 020 An electron is accelerated from rest through potential difference V and then enters a region of unifo

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Answer Gien that *s2.3mm vor 40.7V12 We know that Electron gaih energy - eV Ź mv ev r=laev - 0. From the radi o circular pathFrom that curve point P (40.7, 27x2) P (40.7, 1.3) Slope 1.8 -0.0442 40,7 -0.0442 we know that ē sam = 0.0442 B=5 2m 0.0442 V

Add a comment
Know the answer?
Add Answer to:
Chapter 28, Problem 020 An electron is accelerated from rest through potential difference V and then...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An electron is accelerated from rest through potential difference V

    An electron is accelerated fromrest through potential difference V and then enters a region of uniform magnetic field, where it undergoes uniform circular motion. Figure 28-37 gives the radius rof that motion versus V1/2.The vertical axis scale is set by rs= 3.9 mm, and the horizontal axis scale is set by Vs1/2= 32.4 V1/2. What is the magnitude of themagnetic field?

  • Chapter 28, Problem 020 Your answer is partially correct. Try again. An electron is accelerated from...

    Chapter 28, Problem 020 Your answer is partially correct. Try again. An electron is accelerated from rest through potential difference V and then enters a region of uniform magnetic field, where it undergoes uniform circular motion. The figure gives the radius r of that motion versus v1/2. The vertical axis scale is set by r= 2.9 mm, and the horizontal axis scale is set by V, 1/2= 25.7 v1/2. What is the magnitude of the magnetic field? r (mm) v1/2...

  • Question 6 View Policies Current Attempt in Progress An electron is accelerated from rest through potential...

    Question 6 View Policies Current Attempt in Progress An electron is accelerated from rest through potential difference Vand then enters a region of uniform magnetic field, where it undergoes uniform circular motion. The figure gives the radius of that motion versus V12 The vertical axis scale is set byr - 3.9 mm, and the horizontal axis scale is set by V 1/2-38.5 V12 What is the magnitude of the magnetic field? Number 1 Units

  • • An electron, at rest, is accelerated through region 1, which has a 5000 V potential difference. It then enters region...

    • An electron, at rest, is accelerated through region 1, which has a 5000 V potential difference. It then enters region 2 where there is only a uniform magnetic field and it undergoes uniform circular motion (in a plane) of radius 0.954 mm. After subtending half a circle, the electron exits region 2, traveling in the opposite direction it was before entering region 2. (a) Draw a physical representation of this situation, complete with the direction of the electric and...

  • An electron is accelerated from rest through a potential difference of 2600 V and then enters...

    An electron is accelerated from rest through a potential difference of 2600 V and then enters a region where there is a uniform 1.40-T magnetic field. a) What is the magnitude of the magnetic force on the electron if it is moving in the direction of the magnetic field? b) What is the magnitude of the magnetic force on the electron if it is moving opposite to the direction of the magnetic field? c) What is the magnitude of the...

  • Chapter 28, Problem 009 In the figure, an electron accelerated from rest through potential difference V,...

    Chapter 28, Problem 009 In the figure, an electron accelerated from rest through potential difference V, -0.889 KV enters the gap between two parallel plates having separation d - 16.1 mm and potential difference Vy- 59.7 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line...

  • Chapter 28, Problem 009 XIncorrect. In the figure, an electron accelerated from rest through potential difference...

    Chapter 28, Problem 009 XIncorrect. In the figure, an electron accelerated from rest through potential difference Vi-0.855 kV enters the gap between two parallel plates having separation d 26.8 mm and potential difference V2= 79.8 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in...

  • 2.032 4. An electron is accelerated through potential difference of 150 V from rest and then...

    2.032 4. An electron is accelerated through potential difference of 150 V from rest and then enters a region of uniform magnetic field traveling perpendicular to the field. The magnitude of magnetic field is 0.50 T. a) What is the magnitude of magnetic force acting on the electron (5.8x10-14 N), and b) what is the radius of the path? (8.3x10 m) Note: The mass of electron is 9.11 x 103 kg, and the charge of electron is 1.6x 10-1 C...

  • 2. An electron is accelerated from rest through a potential difference Δνι-800 V, and enters the...

    2. An electron is accelerated from rest through a potential difference Δνι-800 V, and enters the gap between two parallel plates having a separation d-20 mm and potential difference AVF 100 V. The lower plate is at higher potential than the upper. Assume that the electron's velocity is perpendicular to the electric field vector between the plates (i) (a) Calculate the speed of the electron after it travels through the potential difference of A,-800 V. (b) Draw the electric field...

  • An electron is accelerated from rest by a potential difference of 400 V. It then enters...

    An electron is accelerated from rest by a potential difference of 400 V. It then enters a uniform magnetic field of magnitude 225 mT with its velocity perpendicular to the field. (a) Calculate the speed of the electron. m/s (b) Calculate the radius of its path in the magnetic field. m

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT