Question

By a reversible adiabatic expansion, temperature of an ideal gas (n mol) changed from T, to Ts Express the changes of the internal energy and enthalpy by using heat capacity at conatant volume, Cy 2.
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Change in internal energy, ΔU = nCv (T2-T1)

where n is the number of moles of ideal gas, T1 and T2 are the initial and final temperatures.

Change in enthalpy, ΔH = nCp (T2-T1) = n(Cv +R) (T2-T1)

Add a comment
Know the answer?
Add Answer to:
By a reversible adiabatic expansion, temperature of an ideal gas (n mol) changed from T, to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a reversible adiabatic expansion of 1.00 mol of an ideal gas, starting from 1.90 L...

    Consider a reversible adiabatic expansion of 1.00 mol of an ideal gas, starting from 1.90 L and 415 K , if 2.0 kJ of work is done by the expansion. The molar heat capacity at constant volume of the gas is 2.5R. R = 8.314 JK−1mol−1. Determine the final temperature of the gas in the process. Determine the final volume of the gas in the process. Determine the final pressure of the gas in the process.

  • 13.A monatomic ideal gas (N=9.1x1023), undergoes adiabatic expansion. During the expansion, the temperature of the gas...

    13.A monatomic ideal gas (N=9.1x1023), undergoes adiabatic expansion. During the expansion, the temperature of the gas decreases from 800.0K to 500.OK. The initial volume of the gas is 0.10 m². a. What is the final volume and pressure of the gas, after expansion? b. What is the change in internal energy of the gas? C. Calculate the work associated with this process.

  • (b) Consider an adiabatic, reversible expansion of 0 020 mol Ar (perfect gas), initially at 25...

    (b) Consider an adiabatic, reversible expansion of 0 020 mol Ar (perfect gas), initially at 25 C, from 0 50 L to 1 00 L The molar heat capacity of argon is, Cvm 12 48 J K mol- Calculate the work (w) done and heat transferred (q) for this process HINT first calculate the final temperature under the adiabatic, reversible expansion process (8) (b) Consider an adiabatic, reversible expansion of 0 020 mol Ar (perfect gas), initially at 25 C,...

  • One mole of an ideal gas undergoes a reversible adiabatic expansion from T_1, to T_2 while...

    One mole of an ideal gas undergoes a reversible adiabatic expansion from T_1, to T_2 while tripling the volume of the gas. What is the relation between T_1 and T-2? T-2/3 < T_1<T_2 T_2/3 < T_1 < T-2 T_1= T_2 T_2<T_1 T_1 lessthanorequalto T_2/3 One mole of Ar gas undergoes the reversible transformation shown. Assuming Ar behaves ideally, which statement is true for step 2? Delta U= C_p DeltaT DeltaH < Delta U Delat S= c_p ln(T_c/T_B) W = etaRt...

  • Consider a reversible isothermal expansion of a gas at temperature τ from volume V to volume...

    Consider a reversible isothermal expansion of a gas at temperature τ from volume V to volume V + ∆V . This is not a monatomic ideal gas, but the internal energy of the gas is given by U(τ, V ) = a*V* τ^ 4 , where a is a constant. The pressure is p = (1/3 U)/V . (a) What is the change of energy of the gas in the expansion? (b) How much work is done on the gas...

  • Please give detailed explanation for final part. Thanks. Reversible adiabatic expansion of ideal gas (This question...

    Please give detailed explanation for final part. Thanks. Reversible adiabatic expansion of ideal gas (This question involves working through the final section of lecture 3) Explain why the first Law for an reversible adiabatic process gives AU = -PdV, and why this equation doesn't hold for the Joule expansion. Assuming that for an ideal gas U = CVT, prove that the First Law leads to the statement that PVY is constant in a reversible adiabatic process. A container of Helium...

  • Obtain heat q and work w given to an ideal gas (1 moD system and the...

    Obtain heat q and work w given to an ideal gas (1 moD system and the ehange of the internal energy Au in the following processes. Heat capacity at constant volume, G, of the gas does not 1. AU in t A reversible isothermal expansion from (P. V.,T) to (P, V, r). reversibly at constant volume from (Pvv2,T) to (p,y, ) depend on temperature. a) b) A reversible adiabatic expansion from (P, V.T) to (P, V, T2) and then heating...

  • Properties of energy 1 mol of an ideal gas at initial conditions p,-150 kPa, Vi-20 L...

    Properties of energy 1 mol of an ideal gas at initial conditions p,-150 kPa, Vi-20 L was compressed to p2 450 kPa through adiabatic reversible compression. Determine the work, heat, change of internal energy, enthalpy and entropy for the process. The gas heat capacity is Cpm-29.10 J K mol

  • An ideal gas undergoes a cycle consisting of the following mechanically reversible steps: An adiabatic compression...

    An ideal gas undergoes a cycle consisting of the following mechanically reversible steps: An adiabatic compression from Pu V1, T1 to P2, V2, T2 An isobaric expansion from P2, V2, T2 to P3 P2, Vs, T3 - An adiabatic expansion from P3, Vs, Ts to Pa, V4, T4 - A constant-volume process from Pa, V4, T4 to Pi, VV4, T1 (a) Sketch this cycle on a PV diagram (b) Derive an equation that expresses the thermal efficiency (n) of this...

  • During an adiabatic expansion the temperature of 0.490 mol of argon (Ar) drops from 64.0 °C...

    During an adiabatic expansion the temperature of 0.490 mol of argon (Ar) drops from 64.0 °C to 10.0 °C. The argon may be treated as an ideal gas. How much work does the gas do? Express your answer with the appropriate units. t μΑ ? 288 W J Submit Previous Answers Request Answer X Incorrect; Try Again; 2 attempts remaining You may have forgotten that the process is adiabatic, not isobaric. Recall the definition of this process, and use the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT