Question

An ideal gas undergoes a cycle consisting of the following mechanically reversible steps: An adiabatic compression from Pu V1, T1 to P2, V2, T2 An isobaric expansion from P2, V2, T2 to P3 P2, Vs, T3 - An adiabatic expansion from P3, Vs, Ts to Pa, V4, T4 - A constant-volume process from Pa, V4, T4 to Pi, VV4, T1 (a) Sketch this cycle on a PV diagram (b) Derive an equation that expresses the thermal efficiency (n) of this process as a function ofy, Ti, T2 and Ts. Your final equation should not contain any pressure, mole or volume terms. (c) Calculate the efficiency of this process if the gas is Argon with Tl-300°C, T2-1200°C, and T,- 1700°C.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
An ideal gas undergoes a cycle consisting of the following mechanically reversible steps: An adiabatic compression...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • One mole of an ideal gas in a closed system undergoes a mechanically reversible adiabatic compression...

    One mole of an ideal gas in a closed system undergoes a mechanically reversible adiabatic compression process and changes from V1= 0.05 m^3 and P1= 1 bar to P2= 12 bar. Calculate Q, W, ∆U, and ∆H of the process. If the process will become irreversible with 50% efficiency, calculate the W, Q, ∆U, and ∆H.

  • Ignition power stroke adiabatic expansion compression stroke adiabatic compression Pressure 4. (25 pts) in an internal...

    Ignition power stroke adiabatic expansion compression stroke adiabatic compression Pressure 4. (25 pts) in an internal combustion engine, the compression ratio (c), or the ratio volumes in an expansion or compression step, is an important for calculating efficiency. An Otto Engine cycle consists of (see diagram to right): an adiabatic compression step (1-2), a constant volume heating step (2-3). an adiabatic expansion step (3-4), and a constant volume cooling step (4-1). Based on this information, show: a. V3/V4 = V2/...

  • Dmole of an ideal gas follows the cycle shown in the figure. 1-2 is isochoric process,...

    Dmole of an ideal gas follows the cycle shown in the figure. 1-2 is isochoric process, 2-3 is adiabatic process and 3-1 is isobaric process. Vi, Pi are given; V2-2V, P2- P/3. Determine (according to P1, V1) a) Adiabatic coefficient y and molar specific heats Cv and Cp (from the process 2-3) ? b) The heats from 1-2 and 3-1 processes? c) The thermal efficiency of the engine operating with this cycle. PI P2 V2 VI .. Dmole of an...

  • 2. One lb of air undergoes a power cycle consisting of the following processes: 1->2: constant...

    2. One lb of air undergoes a power cycle consisting of the following processes: 1->2: constant volume from p1=20 psi, T1=500°R to T2=820°R 2->3: adiabatic expansion to v3 = 1.4 v2 3->1: constant pressure compression Sketch the cycle on a p-v diagram. Assuming ideal gas behavior, determine (a) The pressure at state 2 in psi. (b) The temperature at state 3 in °R. (c) The thermal efficiency of the cycle.

  • An ideal gas initially at 600K and 10 bar undergoes a four-step mechanically reversible cycle in...

    An ideal gas initially at 600K and 10 bar undergoes a four-step mechanically reversible cycle in a closed system. In step 12 (the process that changes the system from State 1 to State 2), pressure decreases isothermally to 3bar; in step 23, pressure decreases at constant volume to 2bar; in step 34 volume decreases at constant pressure; and in step 41, the gas returns adiabatically to its initial state. Take Cp=(7/2)R and Cv=(5/2)R. Determine the efficiency of the cycle. (Hint:...

  • Help me do it. Problem 4. A Carnot cycle using 2 mol mono-atomic gas works between...

    Help me do it. Problem 4. A Carnot cycle using 2 mol mono-atomic gas works between a hot reservoir Ti 400K and a cold reservoir T2 300K The 1-2 and 3-4 processes are isothermal The 2-3 and 4-1 processes are adiabatic. Given Vi 12 L, V2 -8 L a) (3 pts) Find Pi, P2, Ps, Ps, Vs, V4 b) (4 pts) What is the heat received by the gas during the 1-2 process? o (4 ptsy) What is the heat...

  • The ideal Otto cycle, shown in the figure above, is the cycle used by gasoline engines...

    The ideal Otto cycle, shown in the figure above, is the cycle used by gasoline engines to generate useful work. It consists of an adiabatic compression from step 1 to 2, followed by an isochoric increase in pressure from step 2 to 3, followed by an adiabatic expansion from 3 to 4, and finally an isochoric decrease in pressure from step 4 to 1.Consider an Otto cycle that works on a monoatomic ideal gas (γ= 5/3,cV= 3R/2), initially at a...

  • One mole of an ideal monatomic gas is taken through the reversible cycle shown in the figure Volu...

    One mole of an ideal monatomic gas is taken through the reversible cycle shown in the figure Volume Process B-C is an adiabatic expansion with PB-13.0 atm and V-4.00x103 m3. The volume at State C is 9.00Vg. Process A-B occurs at constant volume, and Process C A occurs at constant pressure. What is the energy added to the gas as heat for the cycle? Submit Answer Tries 0/10 What is the energy leaving the gas as heat? Submit Answer Tries...

  • A Student cycle engine is analyzed using the cold air-standard method. Given the definition of each...

    A Student cycle engine is analyzed using the cold air-standard method. Given the definition of each process in the cycle, determine the thermal efficiency of the engine for each set of defined ratios listed below. All ratios are given as the larger value over the smaller one. --Given Values-- Process 1-2 = Isentropic compression & volume ratio=rv12 Process 2-3 = Isobaric compression & volume ratio=rv23 Process 3-4 = Isometric heat addition & temperature ratio=rT34 Process 4-5 = Isobaric heat addition...

  • An ideal gas (1.82 moles) undergoes the following reversible Carnot cycle. (1) An isothermal expansion at...

    An ideal gas (1.82 moles) undergoes the following reversible Carnot cycle. (1) An isothermal expansion at Thot=850K from 3.20L to 20.40L. (2) An adiabatic expansion until the temperature falls to 298K. The system then undergoes (3) an isothermal compression and a subsequent (4) adiabatic compression until the initial state is reached. a. Calculate work and ΔS for each step in the cycle and its overall efficiency. b. Determine ΔH and ΔU for steps (1) and (2). c. Explain why ΔUcycle=...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT