Question

An ideal gas (1.82 moles) undergoes the following reversible Carnot cycle. (1) An isothermal expansion at...

An ideal gas (1.82 moles) undergoes the following reversible Carnot cycle. (1) An isothermal expansion at Thot=850K from 3.20L to 20.40L. (2) An adiabatic expansion until the temperature falls to 298K. The system then undergoes (3) an isothermal compression and a subsequent (4) adiabatic compression until the initial state is reached.

a. Calculate work and ΔS for each step in the cycle and its overall efficiency.

b. Determine ΔH and ΔU for steps (1) and (2).

c. Explain why ΔUcycle= 0 but Wcycle ≠ 0.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Soluhon Ciiven cy Jdloal Gas ne 1-82 mal es ex pansion Isohermal Tiz 8 50K I3othermal Corking sobStence Cornot cycle 1sothermAdra batc ex pansron cp nRITi-t) 4-1 wt23t4 met work done lo1 +nRCT-T.) mpITiT2) VN-1 -nRT22 V4 AMnet T point A to D Gcs on sMAnet Cuven m2 1-22male 20.401 V 3-20L 20.40 1-32 x 8-31 XC Bs-218)10 Naet 3- 20 6716-24 3l Wnot 2 Q1-92 Do entropy AS 2 kelwAH and bu irSt law hasmodynamic Step I sothosma Pro cuss AQ-04+4w COTnat yele 1-A D4TTOS 4INen DH = 1s0Mormal ey paaston nRT

Add a comment
Know the answer?
Add Answer to:
An ideal gas (1.82 moles) undergoes the following reversible Carnot cycle. (1) An isothermal expansion at...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a reversible isothermal expansion of an ideal gas (step 1 in the Carnot cycle). 1.0...

    Consider a reversible isothermal expansion of an ideal gas (step 1 in the Carnot cycle). 1.0 mol of ideal gas with Cv =3/2R expands from 2.5L to 10.0L at a temperature (Thot) of 600K. For this process, a) Compute deltaU and deltaH b) Compute w c) Compute q d) Compute delta S Thank you!

  • 3. In a Carnot cycle, the isothermal expansion of an ideal gas takes place at 410...

    3. In a Carnot cycle, the isothermal expansion of an ideal gas takes place at 410 K and the isothermal compression at 320 K. During the expansion 600 J of heat energy are transferred to the gas. Determine (a) the work performed by the gas during the cycle, () the heat transferred to the cooler, (c) the efficiency of the cycle

  • Problem 8: Consider the reversible Carnot's cycle of an ideal monatomic gas in the cold cylinder...

    Problem 8: Consider the reversible Carnot's cycle of an ideal monatomic gas in the cold cylinder of 290 K corresponding to the isothermal compression step. Then the volume of the gas is further compressed by a factor of 7.5 in the adiabatic compression step. a) Find the temperature at the final step of the adiabatic compression. b) What is Thot for the isothermal expansion step? c) What is the maximum thermodynamic efficiency for this engine? d) How much would the...

  • My questions: What are the volume of c and d? How do you calculate the delta...

    My questions: What are the volume of c and d? How do you calculate the delta S and delta S surroundings of each step? Consider the reversible Carnot cycle shown below. a PA Isothermal expansion Thoil Adiabatic compression Toold Pressure Thot PE Adiabatic expansion Thot cold Po- Isothermal compression Trot Toold Po Toold va Vc Vd Vo Volume The "working substance" (gas inside the piston, in red above) is 3.10 moles of a monatomic ideal gas, with Cvm = 3R/2....

  • A Carnot cycle is conducted using an ideal diatomic gas. Initially, the gas is at temperature...

    A Carnot cycle is conducted using an ideal diatomic gas. Initially, the gas is at temperature 25C., pressure of 100KPa and volume of 0.01m3. The system is then compressed isothermally to a volume 0.002m3. From that point, the gas undergoes an adiabatic compression ( with gamma= 1.4), until the volume further reduces to 0.001m3. After that, the system goes an isothermal expansion process to a point where the pressure of the system is 263.8KPa. Then the system continues the cycle...

  • 3. (20 pts) In the Carnot engine (refer to the figure in question 2), an ideal...

    3. (20 pts) In the Carnot engine (refer to the figure in question 2), an ideal gas undergoes a cycle of isothermal expansion (A → B), adiabatic expansion (B → C), isothermal compression (C → D), and adiabatic compression (D → A). All processes are assumed to be reversible. The volumes at the points are given that 2VA=VB and VC=2VD. Th is 650 °C and Tc is 30 °C. (1) Calculate the amount of heat added to one mole gas...

  • for 2.25 moles of an ideal gas in a reversible isothermal process calculate q, w Δu, Δh, Δg, Δs, and Δa in joules (J) if the volume changes from 10L to 100L

    for 2.25 moles of an ideal gas in a reversible isothermal process calculate q, w Δu, Δh, Δg, Δs, and Δa in joules (J) if the volume changes from 10L to 100L

  • 12. 1 mole of an ideal gas undergoes an isothermal expansion from V1 = 1.4L followed...

    12. 1 mole of an ideal gas undergoes an isothermal expansion from V1 = 1.4L followed by isobaric compression, p = cst.if P1 = 4.4atm, p2 = 1.7atm → ?- m calculate the work done by gas during the expansion. Express work in J = N·m! • For isothermal processes, AT = 0 T = cst → w=faw=fr&v=/MRT AV 594 Show your work like: `x-int_0^5 v(t)dt rarr x-int_0^5(-4*t)dt=-50 m 13. 1 mole of an ideal gas undergoes an isothermal expansion...

  • 4. The pressure-volume diagram below shows a special reversible cycle called the Carnot cycle A mole...

    4. The pressure-volume diagram below shows a special reversible cycle called the Carnot cycle A mole of an ideal gas starts off in state 1 in contact with a large thermal reservoir at temperature Th. The gas then undergoes an isothermal expansion from Vi to V2. Upon reaching state 2, the gas container is removed from contact with the thermal reservoir and covered with thermal insulation. Next the gas is allowed to expand adiabatically from V2to Vs. Because the expansion...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT