Question

ctur SmartVa IT HelpSynergy SFUSD bookmarks Water Recyding & ReThe EPA Online LibraD D | Question 4 1 pts We consider transverse waves on a string that have a wave speed of 8.00 m/s, amplitude 0.0700 m, and wavelength 0.320 m. The waves travel in the -x-direction, and at t-0 the x-0 end of the string has its maximum upward displacement. Find the transverse displacement of a particle at x-0.360 m at time t -0.150 s. Give your answer in centimeters. Sample submission: 1.23 Question 5 1 pts A sinusoidal wave of frequency 500 Hz has a speed of 350 m/s. How far apart are two points that differ in phase by rad? Give your answer in cm. Sample submission: 12.3 Not for credit: you may also calculate the phase difference between two displacements at a certain point at times 1.00 ms apart.
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
ctur SmartVa IT HelpSynergy SFUSD bookmarks Water Recyding & ReThe EPA Online LibraD D | Question...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • We consider transverse waves on a string that have a wave speed of 8.00 m/s, amplitude...

    We consider transverse waves on a string that have a wave speed of 8.00 m/s, amplitude 0.0700 m, and wavelength 0.320 m. The waves travel in the -x-direction, and at t=0 the x=0 end of the string has its maximum upward displacement. Find the transverse displacement of a particle at x=0.360 m at time t =0.150 s. Give your answer in centimeters.

  • We consider transverse waves on a string that have a wave speed of 8.00 m/s, amplitude...

    We consider transverse waves on a string that have a wave speed of 8.00 m/s, amplitude 0.0700 m, and wavelength 0.320 m. The waves travel in the -x- direction, and at t=0 the x=0 end of the string has its maximum upward displacement. Find the transverse displacement of a particle at x=0.360 m at time t -0.150 s. Give your answer in centimeters.

  • Transverse waves on a string have wave speed 8.00 m/s, amplitude 0.0700 m, and wavelength 0.320...

    Transverse waves on a string have wave speed 8.00 m/s, amplitude 0.0700 m, and wavelength 0.320 m. These waves travel in the x  direction, and at t = 0 the x = 0 end of the string is at y = 0 and moving downward. A. Find the frequency of these waves. B. Find the period of these waves. C. Write the equation for y(x,t) describing these waves. D. Find the transverse displacement of a point on the string at x2...

  • Transverse waves on a string have wave speed 8.00 m/s, amplitude 0.0700 m, and wavelength 0.320...

    Transverse waves on a string have wave speed 8.00 m/s, amplitude 0.0700 m, and wavelength 0.320 m. These waves travel in the x direction, and at t = 0 the x = 0 end of the string is at y = 0 and moving downward. A) Find the frequency of these waves. B) Find the transverse displacement of a point on the string at x2 = 0.120 m at time t2 = 5.00×10−2 s .

  • To practice Problem-Solving Strategy 15.1 Mechanical Waves. Waves on a string are described by the following...

    To practice Problem-Solving Strategy 15.1 Mechanical Waves. Waves on a string are described by the following general equation y(x,t)=Acos(kx−ωt). A transverse wave on a string is traveling in the +x direction with a wave speed of 7.50 m/s , an amplitude of 9.00×10−2 m , and a wavelength of 0.550 m . At time t=0, the x=0 end of the string has its maximum upward displacement. Find the transverse displacement y of a particle at x = 1.40 m and...

  • A sinusoidal wave of frequency 500 Hz has a speed of 350 m/s. How far apart...

    A sinusoidal wave of frequency 500 Hz has a speed of 350 m/s. How far apart are two points that differ in phase by Tn answer in cmm ad? Give yo Sample submission: 12.3 Not for credit: you may also calculate the phase difference between two displacements at a certain point at times 1.00 ms apart.

  • Transverse waves on a string have wave speed 8 m/s, amplitude 0.071 m, and wavelength 0.33...

    Transverse waves on a string have wave speed 8 m/s, amplitude 0.071 m, and wavelength 0.33 m. The waves travel in the negative x direction, and at t=0 the x=0 end of the string has its maximum upward displacement. Find the transverse displacement (in m) of a particle at x=0.36m at time t=0.14s .

  • DQuestion 5 1 pts A simple harmonic oscillator at the point x-0 generates a wave on...

    DQuestion 5 1 pts A simple harmonic oscillator at the point x-0 generates a wave on a horizontal rope. The oscillator operates at a frequency of 40.0 Hz and with an amplitude of 3.00 cm. The rope has a linear mass density of 50.0 g/m, and is stretched with a tension of 5.00 N. Find the maximum transverse acceleration of points on the rope, in m/s? Sample submission: 1230 Note: your answer should be much larger than g. which is...

  • Problem 8 a) A transverse sinusoidal wave on a string has a period T-25.2ms and travels...

    Problem 8 a) A transverse sinusoidal wave on a string has a period T-25.2ms and travels in the negative x direction with a speed of 30.9ms. At 0, a particle on the string atx 0 has a displacement of 2.00cm and travels downward with a speed of 1.85m/s. What is the amplitude of the wave? Submit Answer Tries 0/6 b) What is the initial phase angle? (Give the value in the range 0 to π) Submit Answer Tries 0/6 c)...

  • A transverse sinusoidal wave on a string has a period T-17.0 ms and travels in the...

    A transverse sinusoidal wave on a string has a period T-17.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t = 0, a particle on the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 3.50 m/s. (a) What is the amplitude of the wave? 2.9 Your response differs significantly from the correct answer. Rework your solution from the beginning and check...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT