Question

Problem 1 P- 12 kN A cantilever beam is subjected to a force P and a moment MB shown in the figure. All the dimensions are given in the figure, and the weight of the beam is neglected. MB -22 kNm (a) Draw the free body diagram for the beam showing all the reaction forces and moments. 90 cm (b) Use the equations of equilibrium to find the reaction forces and moments at A
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Problem 1 P- 12 kN A cantilever beam is subjected to a force P and a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A simply supported beam ABCD is subjected to a force P and a moment Mo as...

    A simply supported beam ABCD is subjected to a force P and a moment Mo as shown in the figure. All the dimensions are given in the figure, and the weight of the beam is neglected. (a) Draw the free body diagram for the beam, showing all the applied forces, moments and reaction forces. (b) Use the equations of equilibrium to find the reaction forces at A and C P-15 kN Mp- 10 kNm 4.5 m 3m

  • P=10 kN A cantilever beam is subiected to a concentrated force P, a uniformly distributed load...

    P=10 kN A cantilever beam is subiected to a concentrated force P, a uniformly distributed load w and a moment MI shown in the figure. Neglect the weight of the beam. (a) Draw the free body diagram for the beam showing all the 2 m reactions, replacing the support M.-2 kNm by the reaction forces/moments. (b) Use the equations of equilibrium to find the reaction forces/moments at R (c) Give the expression for the shear force, V- V(x), and the...

  • The cantilever beam shown is subjected to a moment at A and a distributed load that...

    The cantilever beam shown is subjected to a moment at A and a distributed load that acts over segment BC, and is fixed at C. Determine the reactions at the support located at C. Then write expressions for shear and bending moment as a function of their positions along the beam. Finally, use these expressions to construct shear and bending moment diagrams Draw a free-body diagram of the beam on paper. Use your free-body diagram to determine the reactions at...

  • Problem 3 (19 points): A simply supported beam ABCD carries a uniformly distributed load, w, and...

    Problem 3 (19 points): A simply supported beam ABCD carries a uniformly distributed load, w, and a concentrated load, F, as shown in the figure. All the dimensions are given in the figure, and the weight of the beam is neglected a) Draw the free body diagram for the beam, showing all the applied and reaction forces. Find the reaction forces F=14 kN .6m b) Give the expression for the shear force, V- V(x), and the bending moment M M(x),...

  • HW16.11. Cantilever beam with distributed load Consider a cantilever beam subjected to a uniform distributed load...

    HW16.11. Cantilever beam with distributed load Consider a cantilever beam subjected to a uniform distributed load as indicated below. ty L/4 L/2 Draw the free-body diagram and corresponding shear force and bending moment diagrams. To draw the shear force and bending moment diagrams, you MUST use the minimum number of lines (straight or curved), i.e., the minimum number of objects created by clicking the two buttons under "V and M lines" FBD FBD Concentrated forces: FBD Distributed loads: ttt ???

  • The cantilever beam shown is subjected to a moment at A and a distributed load that...

    The cantilever beam shown is subjected to a moment at A and a distributed load that acts over segment BC, and is fixed at C. Determine the reactions at the support located at C. Then write expressions for shear and bending moment as a function of their positions along the beam. Finally, use these expressions to construct shear and bending moment diagrams. Part A - Reactions at support C Draw a free-body diagram of the beam on paper. Use your...

  • 1. (28 pts) A cantilever beam is subjected to the loads as shown in the figure....

    1. (28 pts) A cantilever beam is subjected to the loads as shown in the figure. Va) Draw a free-body diagram and determine the supports at point 0. b) Draw shear and moment diagrams and find the values at key points (i.e. x = 0, 6 and 10 ft). If possible, please show your calculations. c) Find shear force V(x) and bending moment M(x) for () <x<6 ft. 12 10 kip 2 kip/ft skip سے 40 kip.lt 611 4 11...

  • I need help with this problem. A cantilever beam is subjected to a linearly distributed load,...

    I need help with this problem. A cantilever beam is subjected to a linearly distributed load, with W, = 10 kN/m and to an inclined point load F equal to 20 kN, as shown in the figure. The length of the beam is L=10 m. Make a cut at distance x from the free end of the cantilever, as shown in the figure, and use the method of sections to derive expressions for the internal resultant loadings at the cross-section...

  • 9. A beam ABC is subjected to a combination of UDL, point loads and applied moments...

    9. A beam ABC is subjected to a combination of UDL, point loads and applied moments as shown below. Draw to scale the shear force and bending moment diagrams. Label all local maximum and minimum values. Also sketch the deflected shape and indicate the location of any points of inflexion. (Ans: Moment at point D= 105kNm) 50 kNm 120 KN 20 kNm w = 10 kN/m BOTIT be 3 m 3 m 4 m Figure 5 Deflected shape Shear force...

  • A propped cantilever beam with length an is subjected to a trapezoidal load with intensities, 2018...

    A propped cantilever beam with length an is subjected to a trapezoidal load with intensities, 2018 and 9,- 30 kN/m Find the reactions at A and B. Hint: The loading is the sum of uniform and triangular loads. (Enter your reaction forces in kN and your reaction moments in KN · m. Solve this problem by the method of superposition. This beam has constant flexural rigidity El. Assume that the +x-axis is to the right, the +y-axis is up along...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT