Question

A simply supported beam ABCD is subjected to a force P and a moment Mo as shown in the figure. All the dimensions are given in the figure, and the weight of the beam is neglected. (a) Draw the free body diagram for the beam, showing all the applied forces, moments and reaction forces. (b) Use the equations of equilibrium to find the reaction forces at A and C P-15 kN Mp- 10 kNm 4.5 m 3m
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A simply supported beam ABCD is subjected to a force P and a moment Mo as...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 1 P- 12 kN A cantilever beam is subjected to a force P and a...

    Problem 1 P- 12 kN A cantilever beam is subjected to a force P and a moment MB shown in the figure. All the dimensions are given in the figure, and the weight of the beam is neglected. MB -22 kNm (a) Draw the free body diagram for the beam showing all the reaction forces and moments. 90 cm (b) Use the equations of equilibrium to find the reaction forces and moments at A

  • Problem 3 (19 points): A simply supported beam ABCD carries a uniformly distributed load, w, and...

    Problem 3 (19 points): A simply supported beam ABCD carries a uniformly distributed load, w, and a concentrated load, F, as shown in the figure. All the dimensions are given in the figure, and the weight of the beam is neglected a) Draw the free body diagram for the beam, showing all the applied and reaction forces. Find the reaction forces F=14 kN .6m b) Give the expression for the shear force, V- V(x), and the bending moment M M(x),...

  • P=10 kN A cantilever beam is subiected to a concentrated force P, a uniformly distributed load...

    P=10 kN A cantilever beam is subiected to a concentrated force P, a uniformly distributed load w and a moment MI shown in the figure. Neglect the weight of the beam. (a) Draw the free body diagram for the beam showing all the 2 m reactions, replacing the support M.-2 kNm by the reaction forces/moments. (b) Use the equations of equilibrium to find the reaction forces/moments at R (c) Give the expression for the shear force, V- V(x), and the...

  • Shear force and bending moments of the beam. For the simply supported beam subjected to the...

    Shear force and bending moments of the beam. For the simply supported beam subjected to the loading shown in Figure P7.8 derive equations for the shear force V and the bending moment M for any location in the beam. (Place the origin at point A.) plot the shear-force and bending-moment diagrams for the beam, using the derived functions. report the maximum positive bending moment, the maximum negative bending moment, and their respective locations.

  • Q2 The simply supported beam of length L is subjected to a vertical point load P...

    Q2 The simply supported beam of length L is subjected to a vertical point load P at its middle, as shown in Figure Q2. Both young's modulus and second moment of area of this structure are given as E and I. Please provide your answers in terms of letters P,L,1, E. Self-weight of the beam is neglected. P L/2 L/2 Figure Q2 (a) Determine the reactions, bending moment equation along the beam and draw the corresponding bending moment diagram. [10]...

  • Q2 The simply supported beam of length L is subjected to a vertical point load P...

    Q2 The simply supported beam of length L is subjected to a vertical point load P at its middle, as shown in Figure Q2. Both young's modulus and second moment of area of this structure are given as E and I. Please provide your answers in terms of letters P,L,1,E. Self-weight of the beam is neglected P L/2 L/2 Figure Q2 (a) Determine the reactions, bending moment equation along the beam and draw the corresponding bending moment diagram. [10] (b)...

  • Figure 1 shows a simply supported beam with load P applied at point C and D....

    Figure 1 shows a simply supported beam with load P applied at point C and D. If P = 40 kN, L= 3 m and a = 1 m, (a) draw the free-body diagram of the beam; (b) determine the support reaction forces at A and B; (c) determine the shear force and moment in AC, CD and DB sections; (d) draw the shear and moment diagrams of the beam. P P A B D X a a L

  • Q2 The 10 m long simply supported beam is subjected to a uniformly distributed load w...

    Q2 The 10 m long simply supported beam is subjected to a uniformly distributed load w = 10 kN/m throughout and a point load P =10 kN at the midspan of the beam, as shown in Figure Q2 (a). The cross section of this beam is depicted in Figure Q2 (b), which consists of three equal rectangular steel members. Self-weight of the beam is neglected. 30 mm P= 10 KN W = 10 kN/m 200 mm 5 m 5 m...

  • Q2 The 10 m long simply supported beam is subjected to a uniformly distributed load w...

    Q2 The 10 m long simply supported beam is subjected to a uniformly distributed load w = 10 kN/m throughout and a point load P =10 kN at the midspan of the beam, as shown in Figure Q2 (a). The cross section of this beam is depicted in Figure Q2 (b), which consists of three equal rectangular steel members. Self-weight of the beam is neglected. 30 mm P = 10 kN W = 10 kN/m 200 mm 5 m 5...

  • Q2 The 10 m long simply supported beam is subjected to a uniformly distributed load w...

    Q2 The 10 m long simply supported beam is subjected to a uniformly distributed load w = 10 kN/m throughout and a point load P =10 kN at the midspan of the beam, as shown in Figure Q2 (a). The cross section of this beam is depicted in Figure Q2 (b), which consists of three equal rectangular steel members. Self-weight of the beam is neglected. 30 mm P = 10 kN w = 10 kN/m 200 mm 5 m 5...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT