Question
could someone please hlep me to solve this Ex??
Exercise 5- Space group Imm2 Below, there is the representation of the Imm2 space group. The projections are in the (001) pla
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Crystal system is a method of classifying crystalline substances on the basis of their unit cell. There are seven unique crystal systems.

The relation between three-dimensional crystal families, crystal systems and lattice systems is shown in the following table:Crystal family Lattice system Schönflies 14 Bravais Lattices Base-centered Body-centered Face-centered Primitive triclinic mo

Crystal family Crystal system Point group / Crystal class Schönflies Hermann–Mauguin Orbifold Coxeter Point symmetry Order Abstract group
triclinic pedial C1 1 11 [ ]+ enantiomorphic polar 1 trivial {\displaystyle \mathbb {Z} _{1}}{\mathbb {Z}}_{1}
pinacoidal Ci (S2) 1 1x [2,1+] centrosymmetric 2 cyclic {\displaystyle \mathbb {Z} _{2}}\mathbb {Z} _{2}
monoclinic sphenoidal C2 2 22 [2,2]+ enantiomorphic polar 2 cyclic {\displaystyle \mathbb {Z} _{2}}\mathbb {Z} _{2}
domatic Cs (C1h) m *11 [ ] polar 2 cyclic {\displaystyle \mathbb {Z} _{2}}\mathbb {Z} _{2}
prismatic C2h 2/m 2* [2,2+] centrosymmetric 4 Klein four {\displaystyle \mathbb {V} =\mathbb {Z} _{2}\times \mathbb {Z} _{2}}{\mathbb {V}}={\mathbb {Z}}_{2}\times {\mathbb {Z}}_{2}
orthorhombic rhombic-disphenoidal D2 (V) 222 222 [2,2]+ enantiomorphic 4 Klein four {\displaystyle \mathbb {V} =\mathbb {Z} _{2}\times \mathbb {Z} _{2}}{\mathbb {V}}={\mathbb {Z}}_{2}\times {\mathbb {Z}}_{2}
rhombic-pyramidal C2v mm2 *22 [2] polar 4 Klein four {\displaystyle \mathbb {V} =\mathbb {Z} _{2}\times \mathbb {Z} _{2}}{\mathbb {V}}={\mathbb {Z}}_{2}\times {\mathbb {Z}}_{2}
rhombic-dipyramidal D2h (Vh) mmm *222 [2,2] centrosymmetric 8 {\displaystyle \mathbb {V} \times \mathbb {Z} _{2}}{\mathbb {V}}\times {\mathbb {Z}}_{2}
tetragonal tetragonal-pyramidal C4 4 44 [4]+ enantiomorphic polar 4 cyclic {\displaystyle \mathbb {Z} _{4}}\mathbb {Z} _{4}
tetragonal-disphenoidal S4 4 2x [2+,2] non-centrosymmetric 4 cyclic {\displaystyle \mathbb {Z} _{4}}\mathbb {Z} _{4}
tetragonal-dipyramidal C4h 4/m 4* [2,4+] centrosymmetric 8 {\displaystyle \mathbb {Z} _{4}\times \mathbb {Z} _{2}}{\mathbb {Z}}_{4}\times {\mathbb {Z}}_{2}
tetragonal-trapezohedral D4 422 422 [2,4]+ enantiomorphic 8 dihedral {\displaystyle \mathbb {D} _{8}=\mathbb {Z} _{4}\rtimes \mathbb {Z} _{2}}{\mathbb {D}}_{8}={\mathbb {Z}}_{4}\rtimes {\mathbb {Z}}_{2}
ditetragonal-pyramidal C4v 4mm *44 [4] polar 8 dihedral {\displaystyle \mathbb {D} _{8}=\mathbb {Z} _{4}\rtimes \mathbb {Z} _{2}}{\mathbb {D}}_{8}={\mathbb {Z}}_{4}\rtimes {\mathbb {Z}}_{2}
tetragonal-scalenohedral D2d (Vd) 42m or 4m2 2*2 [2+,4] non-centrosymmetric 8 dihedral {\displaystyle \mathbb {D} _{8}=\mathbb {Z} _{4}\rtimes \mathbb {Z} _{2}}{\mathbb {D}}_{8}={\mathbb {Z}}_{4}\rtimes {\mathbb {Z}}_{2}
ditetragonal-dipyramidal D4h 4/mmm *422 [2,4] centrosymmetric 16 {\displaystyle \mathbb {D} _{8}\times \mathbb {Z} _{2}}{\mathbb {D}}_{8}\times {\mathbb {Z}}_{2}
hexagonal trigonal trigonal-pyramidal C3 3 33 [3]+ enantiomorphic polar 3 cyclic {\displaystyle \mathbb {Z} _{3}}\mathbb {Z} _{3}
rhombohedral C3i (S6) 3 3x [2+,3+] centrosymmetric 6 cyclic {\displaystyle \mathbb {Z} _{6}=\mathbb {Z} _{3}\times \mathbb {Z} _{2}}{\mathbb {Z}}_{6}={\mathbb {Z}}_{3}\times {\mathbb {Z}}_{2}
trigonal-trapezohedral D3 32 or 321 or 312 322 [3,2]+ enantiomorphic 6 dihedral {\displaystyle \mathbb {D} _{6}=\mathbb {Z} _{3}\rtimes \mathbb {Z} _{2}}{\mathbb {D}}_{6}={\mathbb {Z}}_{3}\rtimes {\mathbb {Z}}_{2}
ditrigonal-pyramidal C3v 3m or 3m1 or 31m *33 [3] polar 6 dihedral {\displaystyle \mathbb {D} _{6}=\mathbb {Z} _{3}\rtimes \mathbb {Z} _{2}}{\mathbb {D}}_{6}={\mathbb {Z}}_{3}\rtimes {\mathbb {Z}}_{2}
ditrigonal-scalenohedral D3d 3m or 3m1 or 31m 2*3 [2+,6] centrosymmetric 12 dihedral {\displaystyle \mathbb {D} _{12}=\mathbb {Z} _{6}\rtimes \mathbb {Z} _{2}}{\mathbb {D}}_{{12}}={\mathbb {Z}}_{6}\rtimes {\mathbb {Z}}_{2}
hexagonal hexagonal-pyramidal C6 6 66 [6]+ enantiomorphic polar 6 cyclic {\displaystyle \mathbb {Z} _{6}=\mathbb {Z} _{3}\times \mathbb {Z} _{2}}{\mathbb {Z}}_{6}={\mathbb {Z}}_{3}\times {\mathbb {Z}}_{2}
trigonal-dipyramidal C3h 6 3* [2,3+] non-centrosymmetric 6 cyclic {\displaystyle \mathbb {Z} _{6}=\mathbb {Z} _{3}\times \mathbb {Z} _{2}}{\mathbb {Z}}_{6}={\mathbb {Z}}_{3}\times {\mathbb {Z}}_{2}
hexagonal-dipyramidal C6h 6/m 6* [2,6+] centrosymmetric 12 {\displaystyle \mathbb {Z} _{6}\times \mathbb {Z} _{2}}{\mathbb {Z}}_{6}\times {\mathbb {Z}}_{2}
hexagonal-trapezohedral D6 622 622 [2,6]+ enantiomorphic 12 dihedral {\displaystyle \mathbb {D} _{12}=\mathbb {Z} _{6}\rtimes \mathbb {Z} _{2}}{\mathbb {D}}_{{12}}={\mathbb {Z}}_{6}\rtimes {\mathbb {Z}}_{2}
dihexagonal-pyramidal C6v 6mm *66 [6] polar 12 dihedral {\displaystyle \mathbb {D} _{12}=\mathbb {Z} _{6}\rtimes \mathbb {Z} _{2}}{\mathbb {D}}_{{12}}={\mathbb {Z}}_{6}\rtimes {\mathbb {Z}}_{2}
ditrigonal-dipyramidal D3h 6m2 or 62m *322 [2,3] non-centrosymmetric 12 dihedral {\displaystyle \mathbb {D} _{12}=\mathbb {Z} _{6}\rtimes \mathbb {Z} _{2}}{\mathbb {D}}_{{12}}={\mathbb {Z}}_{6}\rtimes {\mathbb {Z}}_{2}
dihexagonal-dipyramidal D6h 6/mmm *622 [2,6] centrosymmetric 24 {\displaystyle \mathbb {D} _{12}\times \mathbb {Z} _{2}}{\mathbb {D}}_{{12}}\times {\mathbb {Z}}_{2}
cubic tetartoidal T 23 332 [3,3]+ enantiomorphic 12 alternating {\displaystyle \mathbb {A} _{4}}{\mathbb {A}}_{4}
diploidal Th m3 3*2 [3+,4] centrosymmetric 24 {\displaystyle \mathbb {A} _{4}\times \mathbb {Z} _{2}}{\mathbb {A}}_{4}\times {\mathbb {Z}}_{2}
gyroidal O 432 432 [4,3]+ enantiomorphic 24 symmetric {\displaystyle \mathbb {S} _{4}}{\mathbb {S}}_{4}
hextetrahedral Td 43m *332 [3,3] non-centrosymmetric 24 symmetric {\displaystyle \mathbb {S} _{4}}{\mathbb {S}}_{4}
hexoctahedral Oh m3m *432 [4,3] centrosymmetric 48 {\displaystyle \mathbb {S} _{4}\times \mathbb {Z} _{2}}{\mathbb {S}}_{4}\times {\mathbb {Z}}_{2}
Add a comment
Know the answer?
Add Answer to:
could someone please hlep me to solve this Ex?? Exercise 5- Space group Imm2 Below, there...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • i can't solve this question of coordination chemistry, could someone hlep me please Exercise 1: 1. What kind(s) o...

    i can't solve this question of coordination chemistry, could someone hlep me please Exercise 1: 1. What kind(s) of interaction between the ligand and the metal ion is(are) considered in the crystal field approach? 2. Give and justify the degeneracy lifting for a tetrahedral complex. Would it be the same for an octahedral complex? 3. Let us consider hexaaquacopper(II) ion. Justify the elongation of two opposite Cu-O bonds (along z for example) compared to the other four Cu-O bonds using...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT