Question

A light string can support a stationary hanging mass of 40 kg before breaking. Determine the maximum speed of a 5 kg object t
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Jension (max) in the string T= 400g = 40x9.8 = 3921 Tmax prevides centripetal feree Tmax = mumer Umão - 392x0.8. 62.72 | Vmax

Add a comment
Know the answer?
Add Answer to:
A light string can support a stationary hanging mass of 40 kg before breaking. Determine the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • a light string can support a stationary hanging mass of 40kg before breaking. determine the maximum...

    a light string can support a stationary hanging mass of 40kg before breaking. determine the maximum speed of a 5kg object tied to one end of a string, while rotating in a circle of radius 0.8m , on a horizontal friction less table while the other end of the string is held fixed.

  • A light string can support a stationary hanging load of 24.4 kg before breaking. An object...

    A light string can support a stationary hanging load of 24.4 kg before breaking. An object of mass m = 2.93 kg attached to the string rotates on a frictionless, horizontal table in a circle of radius r = 0.819 m, and the other end of the string is held fixed as in the figure below. What range of speeds can the object have before the string breaks?

  • A light string can support a stationary hanging load of 24.4 kg before breaking. An object...

    A light string can support a stationary hanging load of 24.4 kg before breaking. An object of mass m = 3.19 kg attached to the string rotates on a frictionless, horizontal table in a circle of radius r = 0.777 m, and the other end of the string is held fixed as in the figure below. What range of speeds can the object have before the string breaks OSVS m/s m

  • The block shown is pulled a distance d = 1.5 m across a frictionless horizontal surface...

    The block shown is pulled a distance d = 1.5 m across a frictionless horizontal surface at a constant speed by the force shown. If M = 5.0 kg, F = 30 N and = 40°, find: (a) the work done by the force (b) the normal force exerted by the surface A light string can support a stationary hanging mass of 40 kg before breaking. Determine the maximum speed of a 5 kg object tied to one end of...

  • A light string can support a stationary hanging load of 25.4 kg before breaking. An object...

    A light string can support a stationary hanging load of 25.4 kg before breaking. An object of mass m = 3.23 kg attached to the string rotates on a frictionless, horizontal table in a circle of radius r = 0.795 m, and the other end of the string is held fixed as in the figure below. What range of speeds can the object have before the string breaks? OSVS Your response differs from the correct answer by more than 10%....

  • An air puck of mass 0.23 kg is tied to a string and allowed to revolve in a circle of radius 1.2 m on a frictionl...

    An air puck of mass 0.23 kg is tied to a string and allowed to revolve in a circle of radius 1.2 m on a frictionless horizontal table. The other end of the string passes through a hole in the center of the table, and a mass of 0.9 kg is tied to it. The suspended mass remains in equilibrium while the puck on the tabletop revolves. a) What is the tension in the string? (b) What is the force...

  • find the maximum speed the stone can attain without breaking the string A stone with a...

    find the maximum speed the stone can attain without breaking the string A stone with a mass of 0.700 kg is attached to one end of a string 0.700 m long. The string will break if its tension exceeds 55.0 N. The stone is whirled in a horizontal circle on a frictionless tabletop; the other end of the string remains fixed. A Review A stone with a mass of 0.700 kg is attached to one end of a string 0.700...

  • An air puck of mass 0.200 kg is tied to a string and allowed to revolve...

    An air puck of mass 0.200 kg is tied to a string and allowed to revolve in a circle of radius 1.03 m on a frictionless horizontal table. The other end of the string passes through a hole in the center of the table, and a mass of 1.22 kg is tied to it as seen in the figure below. The suspended mass remains in equilibrium while the puck on the tabletop revolves. What is the tension in the string?...

  • An air puck of mass 0.18 kg is tied to a string and allowed to revolve...

    An air puck of mass 0.18 kg is tied to a string and allowed to revolve in a circle of radius 1.1 m on a frictionless horizontal table. The other end of the string passes through a hole in the center of the table, and a mass of 1.3 kg is tied to it. The suspended mass remains in equilibrium while the puck on the tabletop revolves (a) What is the tension in the string? (6) What is the force...

  • 27. An air puck of mass m, = 0.25 kg is tied to a string and...

    27. An air puck of mass m, = 0.25 kg is tied to a string and allowed to revolve in a circle of radius R = 1.0 m on a frictionless hori- zontal table. The other end of the string passes through a hole in the center of the table, and a mass of m, = 1.0 kg is tied to it (Fig. P7.27). The suspended mass remains in equilibrium while the puck on the tabletop revolves. (a) What is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT