Question

e Calculate the position of EF with respect to E. 5. Explain why holes are found wny holes are found near the top of the vale
TK) 400 500 10 ) (cm Figure 3-17 Intrinsic carrier concentration for Ge, Si, and GaAs as a function of inverse temperature. T
0 0
Add a comment Improve this question Transcribed image text
Answer #1

When we apply Electric field, the Electrons in the other elise Empty Conduction band (if no field applied) will move in the oThe lowest Energy state available (top of the valence band). Similarly Electrony in the conduction band will rearrange so tha

According to the guideliness i did 1st full question..

Add a comment
Know the answer?
Add Answer to:
e Calculate the position of EF with respect to E. 5. Explain why holes are found...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • GaAs laser (a) The degenerate occupation of the conduction and valence bands with electrons and holes...

    GaAs laser (a) The degenerate occupation of the conduction and valence bands with electrons and holes helps to maintain the laser requirement that emission must overcome absorption. Explain how the degeneracy prevents band-to-band absorption at the emission wavelength of 867 nm (b) Assuming equal electron and hole concentrations, and same effective masses for electrons and holes, calculate the minimum carrier concentration n -p for population inversion in GaAs at 300 K. The intrinsic carrier concentration at 300 K in GaAs...

  • Here are the equations to use: Use Eq. (2) below to calculate the intrinsic number density...

    Here are the equations to use: Use Eq. (2) below to calculate the intrinsic number density of conduction electrons in Si at a temperature of 405 K. You may use the values of effective mass mp 1.04mo. 09m1 where m is the mass of a free electron and the band gap energy value E- 1.12 ev, The conductivity of a semiconductor material can be expressed by where q is the elementary charge, n the number density of conduction electrons, μη...

  • You have an intrinsic semiconductor. (a) When temperature T = 0[K], obtain the density of electrons...

    You have an intrinsic semiconductor. (a) When temperature T = 0[K], obtain the density of electrons n in the conduction band and that of holes p in the valence band; (b) When T = 300[K], obtain the mathematical relationship between n and p (e.g., n=p, n>p, or n<p); (c) When T = 300[K], obtain the mathematical relationship between the np product and the intrinsic carrier concentration ni.

  • The energy gap between the valence band and the conduction band in the widely-usd semiconductor gallium...

    The energy gap between the valence band and the conduction band in the widely-usd semiconductor gallium arsenide (GaAs) is A- 1.424 ev. (k 8.617x105 eV/K) At T 0 K the valence band has all the electrons. At T 0 K (shown), electrons are thermally excited across the gap into the conduction band, leaving an equal number of holes behind. Conduction band Energy gap, A Valence band 1) The density of free electrons (ne number per volumer) in a pure crystal...

  • (2) In a semiconductor with an energy gap Eg between the valence and the conduction bands we can take Ef (the Fermi ene...

    (2) In a semiconductor with an energy gap Eg between the valence and the conduction bands we can take Ef (the Fermi energy) to be halfway between the bands (see figure below): Conduction band Energy gap Eg Valence band Semiconductor a. Show that for a typical semiconductor or insulator at room temperature the Fermi- Dirac factor is approximately equal to exp(-E 2kBT). (Typical Eg for semi-conductors ranges from about 0.5eV to 6eV at T-293K.) b. In heavily doped n-type silicon,...

  • Please help with this homework problem please, I would appriciate it very much if you would...

    Please help with this homework problem please, I would appriciate it very much if you would break me into this. Thank You Q8) As was discussed in Section 1 b, an expression for the intrinsic carrier concentration in a semiconductor is given by: np = n = N N, exp E kᎢ Where N and N, are the so-called density of states and are given by N = 2 211m ky h- And N = 2 211m kT h For...

  • Theory section is below for the equations PRELAB Read the theory section below. Calculate the photon...

    Theory section is below for the equations PRELAB Read the theory section below. Calculate the photon wavelength in nm corresponding to a photon energy equal to the theoretical band gap energy of S1.121 eV and GaAs, 1.422 eV. These will be used to set the monochromator. THEORY One of the most important characteristics of a semiconductor is its band gap energy Eg Whereas an electron in an isolated atom has discrete energy levels, an electron in a semiconductor crystal has...

  • Please help me out.. Need to pass this course as a removal for my other course.....

    Please help me out.. Need to pass this course as a removal for my other course.. Si material parameters: Band gap energy at 300 K: Eg = 1.124 eV Relative permittivity: x = 11.7 Effective mass of electron: m =1.08m for density of states, Effective mass of hole: m = 0.81m for density of states, m = 0.26m for conductivity m =0.39m for conductivity Up = 470 cm/V.s Mobility: Un = 1400 cm /V-s, Diffusion coefficient: Do = 36 cm²/s,...

  • QUESTION 43 (10 Marks) a) Calculate the conductivity of an intrinsic silicon (SI) semiconductor at 27°C...

    QUESTION 43 (10 Marks) a) Calculate the conductivity of an intrinsic silicon (SI) semiconductor at 27°C if the hole mobility is 460 cm V's and the electron mobility is 1350 cm? Vis! Assume an intrinsic carrier density of 1.45 x 10 carriers/cm' and an electron charge of -0.16 x 10-4C (3 marks) b) Using Figure 8, calculate the conductivity of the Si intrinsic semiconductor if the temperature is increased to 150°C, assuming the same electron and hole mobilities (2 marks)...

  • Could i please have assistance in working out and theory for this question. a) Calculate the...

    Could i please have assistance in working out and theory for this question. a) Calculate the conductivity of an intrinsic Si conductor at 27 °C if the hole mobility is 450 cm2 V1s-1 and the electron mobility is 1350 cm2 V's1. Assume an intrinsic carrier density of 1.45 x 1010 carriers/cm3 and an electron charge of -0.16 x 10-18 C. b) Using Figure 5, calculate the conductivity of the Si intrinsic conductor if the temperature is increased to 127 °C...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT