Question

6. a) Applying the superposition principle,find an expression vector at the distance X from the center of the ring. for the electric field b) Calculate the electric charge on a ring with radius 18 cm, f distance of 20 cm from its center is 25 KN/C
0 0
Add a comment Improve this question Transcribed image text
Answer #1

dl 2 wis be (만㎡)

Add a comment
Know the answer?
Add Answer to:
6. a) Applying the superposition' principle,find an expression vector at the distance X from the center...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 6. a) Applying the superposition' principle, find an expression for the electric field vector at the...

    6. a) Applying the superposition' principle, find an expression for the electric field vector at the distance X from the center of the ring b) Calculate the electric charge on a ring with radius 18 cm, if the electric field at the distance of 20 cm from its center is 25 KN/C

  • kqx of the net electric held at a distance x from the center and on the...

    kqx of the net electric held at a distance x from the center and on the axis of a uniformly charged ring of radius r and total charge q is gliven by Ent7 Consider two identical rings of radius 12.0 om separated by a distance d 28.5 cm as shown in the diagram below. The charge per unit length on ring A is -3.30 nC/cm, while that on ring B is+3.30 nC/cm, and the centers of the two rings lie...

  • 5. A rod 200 cm long has a linear charge density λ·A xs Cm. If A·2.0...

    5. A rod 200 cm long has a linear charge density λ·A xs Cm. If A·2.0 x 10" C/m Applying the superposition's principle a) Find an expression for the electric field vector at the distance 16 cm from its center 16 cm E-? L=20 cm b) Determine magnitude and direction of the electric field along the axis of the rod at a point 16.0 cm from its center.

  • helpp me please!! kqx of the net electric held at a distance x from the center...

    helpp me please!! kqx of the net electric held at a distance x from the center and on the axis of a uniformly charged ring of radius r and total charge q is gliven by Ent7 Consider two identical rings of radius 12.0 om separated by a distance d 28.5 cm as shown in the diagram below. The charge per unit length on ring A is -3.30 nC/cm, while that on ring B is+3.30 nC/cm, and the centers of the...

  • The magnitude of the net electric field at a distance x from the center and on...

    The magnitude of the net electric field at a distance x from the center and on the axis of a uniformly charged ring of radius r and total charge q is given by Enct radlus 12.0 cm separated by a distance d-22.8 cm as shown In the dlagram below. The charge per unit length on ring A Is-5.20 nC/cm, whlle that on ring 8 Is +5.20 nC/cm, and the centers of the two rings lle ,23/2 Consider two identical rings...

  • The magnitude of the net electric field at a distance x from the center and on...

    The magnitude of the net electric field at a distance x from the center and on the axis of a uniformly charged ring of radius r and total charge q is given by Enet = kqx (x2 + r2)3/2 . Consider two identical rings of radius 12.0 cm separated by a distance d = 24.6 cm as shown in the diagram below. The charge per unit length on ring A is −4.30 nC/cm, while that on ring B is +4.30...

  • ● În lecture we derived the electric field ǎ distance z above the center of thin...

    ● În lecture we derived the electric field ǎ distance z above the center of thin ring of charge ad ă iniform disk of charge. Now determine the electric field a distance z above the center of a ring with charge uniformly distributed between an inner radius R1 and an outer radius R2 (alternatively, you can describe this as a disk of radius R2 with a circular hole of radius R1). Do this two ways: by directly performing an integral...

  • 4. In lecture we derived the electric field a distance z above the center of a...

    4. In lecture we derived the electric field a distance z above the center of a thin ring of charge and a uniform disk of charge. Now determine the electric field a distance z above the center of a ring with charge uniformly distributed between an inner radius Ri and an outer rads R2 (alternatively, you can describe this as a disk of rads 2 with a circular hole of radius R). Do this two ways: by directly performing an...

  • Find the electric field due to a disk at point X, L distance away. Integrate using...

    Find the electric field due to a disk at point X, L distance away. Integrate using a ring of charge r distance away from the center. R - Radius - Charge/unit area

  • A uniformly charged ring of radius 10.0 cm has a total charge of 50.0 μC. Find...

    A uniformly charged ring of radius 10.0 cm has a total charge of 50.0 μC. Find the electric field on the axis of the ring at the following distances from the center of the ring. (Choose the x-axis to point along the axis of the ring.) (a) 1.00 cm What is the general expression for the electric field along the axis of a uniformly charged ring? î MN/C (b) 5.00 cm What is the general expression for the electric field...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT