Question

Millikan measured the electron's charge by observing tiny charged oil drops in an electric field. Each...

Millikan measured the electron's charge by observing tiny charged oil drops in an electric field. Each drop had a charge imbalance of only a few electrons. The strength of the electric field was adjusted so that the electric and gravitational forces on a drop would balance and the drop would be suspended in air. In this way the charge on the drop could be calculated. The charge was always found to be a small multiple of 1.6e-19 C. Find the charge on an oil drop weighing 4.44 10-14 N and suspended in a downward field of magnitude 3.47 104 N/C.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution,

Force, F = mg = qE

Charge, q = (4.44 x 10^-14)/3.47 x 10^4

Charge, q = 1.28 x 10^-18 C

Comment in case any doubt please rate my answer.....

Add a comment
Know the answer?
Add Answer to:
Millikan measured the electron's charge by observing tiny charged oil drops in an electric field. Each...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Millikan measured the electron's charge by observing tiny charged oil drops in an electric field. Each...

    Millikan measured the electron's charge by observing tiny charged oil drops in an electric field. Each drop had a charge imbalance of only a few electrons. The strength of the electric field was adjusted so that the electric and gravitational forces on a drop would balance and the drop would be suspended in air. In this way the charge on the drop could be calculated. The charge was always found to be a small multiple of 1.6e-19 C. Find the...

  • In the famous Millikan oil-drop experiment, tiny spherical droplets of oil are sprayed into a uniform...

    In the famous Millikan oil-drop experiment, tiny spherical droplets of oil are sprayed into a uniform vertical electric field. The drops get a very small charge (just a few electrons) due to friction with the atomizer as they are sprayed. The field is adjusted until the drop (which is viewed through a small telescope) is just balanced against gravity and therefore remains stationary. Using the measured value of the electric field, we can calculate the charge on the drop and...

  • In the famous Millikan oil-drop experiment, tiny spherical droplets of oil are sprayed into a uniform...

    In the famous Millikan oil-drop experiment, tiny spherical droplets of oil are sprayed into a uniform vertical electric field. The drops get a very small charge (just a few electrons) due to friction with the atomizer as they are sprayed. The field is adjusted until the drop (which is viewed through a small telescope) is just balanced against gravity and therefore remains stationary. Using the measured value of the electric field, we can calculate the charge on the drop and...

  • In 1909, Robert Millikan was the first to find the charge of an electron in his...

    In 1909, Robert Millikan was the first to find the charge of an electron in his now-famous oil-drop experiment. In that experiment tiny oil drops were sprayed into a uniform electric field between a horizontal pair of oppositely charged plates. The drops were observed with a magnifying eyepiece, and the electric field was adjusted so that the electric force on some negatively charged oil drops was just sufficient to balance their weight. Millikan accurately measured the charges on many oil...

  • Oil Drop 11. Robert Millikan received a Nobel Prize for determining the charge on the electron....

    Oil Drop 11. Robert Millikan received a Nobel Prize for determining the charge on the electron. To do this, he set up a of oil between potential difference between two horizontal parallel metal plates. He then sprayed drops the plates and adjusted the potential difference until drops of a certain size between the plates, as shown above. Suppose that when the potential difference adjusted until the electric field is 10,000 N/C downward, a certain drop with a mass of remains...

  • Question 3 (3 points) In a Millikan Oil-Drop type experiment, oil drops with an excess charge...

    Question 3 (3 points) In a Millikan Oil-Drop type experiment, oil drops with an excess charge of two electrons are suspended between the two plates. If the mass of the oil drop is one million times the mass of the proton, and the plates are 2.5 cm apart, what is the voltage of the upper plate relative to that of the lower plate? Assume a uniform field between the two plates.

  • In a Millikan oil drop apparatus, an electric field of 23 kN/C is created in a...

    In a Millikan oil drop apparatus, an electric field of 23 kN/C is created in a chamber to suspend oil drops that are missing electrons. What is the electric force on a drop that is missing 5 electrons?

  • The classic Millikan oil drop experiment was the first to obtain an accurate measurement of the...

    The classic Millikan oil drop experiment was the first to obtain an accurate measurement of the charge on an electron. In it, oil drops were suspended against the gravitational force by a vertical electric field. Consider an oil drop with a weight of 1.6 x 10-14N, if the drop has a single excess electron, find the magnitude (in N/C) of the electric field needed to balance its weight. Your should round your answer to an integer, indicate only the number,...

  • The classic Millikan oil drop experiment was the first to obtain an accurate measurement of the...

    The classic Millikan oil drop experiment was the first to obtain an accurate measurement of the charge on an electron. In it, oil drops were suspended against the gravitational force by a vertical electric field. Consider an oil drop with a weight of 1.2 x 10-14N, if the drop has a single excess electron, find the magnitude (in N/C) of the electric field needed to balance its weight. Your should round your answer to an integer, indicate only the number,...

  • with diagram if possible 0.0200 mx Figure 16-33 Problem 86 In the famous Millikan oil-drop experiment,...

    with diagram if possible 0.0200 mx Figure 16-33 Problem 86 In the famous Millikan oil-drop experiment, tiny cal droplets of oil are sprayed into a uniform vertical electric field. The drops get a very small charge (just a few elec trons) due to friction with the atomizer as they are sprayed. The field is adjusted until the drop (which is viewed through a small telescope) is just balanced against gravity and there- fore remains stationary. Using the measured value of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT