Question

In the famous Millikan oil-drop experiment, tiny spherical droplets of oil are sprayed into a uniform...

In the famous Millikan oil-drop experiment, tiny spherical droplets of oil are sprayed into a uniform vertical electric field. The drops get a very small charge (just a few electrons) due to friction with the atomizer as they are sprayed. The field is adjusted until the drop (which is viewed through a small telescope) is just balanced against gravity and therefore remains stationary. Using the measured value of the electric field, we can calculate the charge on the drop and from this calculate the charge e of the electron. In one apparatus, the drops are 1.40 (\mu\)m in diameter and the oil has a density of 0.850 g/cm33.

1)

If the drops are negatively charged, which way should the electric field point to hold them stationary? Up or Down?

2)

If a certain drop contains four excess electrons, what magnitude electric field is needed to hold it stationary? (Express your answer to three significant figures.)

3)

You measure a balancing field of 5183 N/C for another drop. How many excess electrons are on this drop? (Express your answer as an integer.)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

change Ο.SSO xio. 옭)앵xnx (t.#xidy,x 5.0 =4x1.6×以E 14.960 x10-16 Ne-E 今 ,sits o..gxi8.3().yxw).g& = 1.847x10 colouvub

Add a comment
Know the answer?
Add Answer to:
In the famous Millikan oil-drop experiment, tiny spherical droplets of oil are sprayed into a uniform...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In the famous Millikan oil-drop experiment, tiny spherical droplets of oil are sprayed into a uniform...

    In the famous Millikan oil-drop experiment, tiny spherical droplets of oil are sprayed into a uniform vertical electric field. The drops get a very small charge (just a few electrons) due to friction with the atomizer as they are sprayed. The field is adjusted until the drop (which is viewed through a small telescope) is just balanced against gravity and therefore remains stationary. Using the measured value of the electric field, we can calculate the charge on the drop and...

  • with diagram if possible 0.0200 mx Figure 16-33 Problem 86 In the famous Millikan oil-drop experiment,...

    with diagram if possible 0.0200 mx Figure 16-33 Problem 86 In the famous Millikan oil-drop experiment, tiny cal droplets of oil are sprayed into a uniform vertical electric field. The drops get a very small charge (just a few elec trons) due to friction with the atomizer as they are sprayed. The field is adjusted until the drop (which is viewed through a small telescope) is just balanced against gravity and there- fore remains stationary. Using the measured value of...

  • In a particular Millikan oil-drop apparatus, the plates are 2.25 cm apart. The oil used has...

    In a particular Millikan oil-drop apparatus, the plates are 2.25 cm apart. The oil used has a density of 0.830 g/cm3 , and the atomizer that sprays the oil drops produces drops of diameter 1.00×10−3 mm . A. What strength of electric field is needed to hold such a drop stationary against gravity if the drop contains five excess electrons? B. What should be the potential difference across the plates to produce this electric field? C. If another drop of...

  • In 1909, Robert Millikan was the first to find the charge of an electron in his...

    In 1909, Robert Millikan was the first to find the charge of an electron in his now-famous oil-drop experiment. In that experiment tiny oil drops were sprayed into a uniform electric field between a horizontal pair of oppositely charged plates. The drops were observed with a magnifying eyepiece, and the electric field was adjusted so that the electric force on some negatively charged oil drops was just sufficient to balance their weight. Millikan accurately measured the charges on many oil...

  • Millikan measured the electron's charge by observing tiny charged oil drops in an electric field. Each...

    Millikan measured the electron's charge by observing tiny charged oil drops in an electric field. Each drop had a charge imbalance of only a few electrons. The strength of the electric field was adjusted so that the electric and gravitational forces on a drop would balance and the drop would be suspended in air. In this way the charge on the drop could be calculated. The charge was always found to be a small multiple of 1.6e-19 C. Find the...

  • Millikan measured the electron's charge by observing tiny charged oil drops in an electric field. Each...

    Millikan measured the electron's charge by observing tiny charged oil drops in an electric field. Each drop had a charge imbalance of only a few electrons. The strength of the electric field was adjusted so that the electric and gravitational forces on a drop would balance and the drop would be suspended in air. In this way the charge on the drop could be calculated. The charge was always found to be a small multiple of 1.6e-19 C. Find the...

  • Describe the apparatus Millikan used in the famous oil drop experiment.

    Describe the apparatus Millikan used in the famous oil drop experiment.

  • In a Millikan oil drop apparatus, an electric field of 23 kN/C is created in a...

    In a Millikan oil drop apparatus, an electric field of 23 kN/C is created in a chamber to suspend oil drops that are missing electrons. What is the electric force on a drop that is missing 5 electrons?

  • In 1909, Millikan performed a famous experiment in which he measured the charge of the electron...

    In 1909, Millikan performed a famous experiment in which he measured the charge of the electron (and for which he won the Nobel prize). In his experiment, oil drops carrying excess electrons are made to float between two charged large parallel, horizontal plates, as shown, by adjusting a uniform vertical electric field between the plates so that the drops do not fall down. Suppose each drop has a mass of 3.3 × 10−15kg, and one of the drops floats (the...

  • The classic Millikan oil drop experiment was the first to obtain an accurate measurement of the...

    The classic Millikan oil drop experiment was the first to obtain an accurate measurement of the charge on an electron. In it, oil drops were suspended against the gravitational force by a vertical electric field. Consider an oil drop with a weight of 1.6 x 10-14N, if the drop has a single excess electron, find the magnitude (in N/C) of the electric field needed to balance its weight. Your should round your answer to an integer, indicate only the number,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT