Question

A glass flask whose volume is 1000.42 cm° at 0.0° C is completely filled with mercury at this temperature. When flask and mer

0 0
Add a comment Improve this question Transcribed image text
Answer #1

here,

initial volume of glass , V1 = 1000.42 cm^3

the initial volume of mercury , V2 = 1000.42 cm^3

when change in temperature , dT = 55.6 degree

the coefficient of volume expansion for mercury , beta2 = 18 * 10^-5 K^-1

let the coefficient of volume expansion for glass be beta1

the overflow volume , dV = dV2 - dV1

dV = V2 * beta2 * dT - V1 * beta1 * dT

8.68 = 1000.42 * 55.6 * ( 18 * 10^-5 - beta1)

solving for beta1

beta1 = 2.4 * 10^-5

the coefficient of volume expansion for glass is 2.4 * 10^-5 K^-1

Add a comment
Know the answer?
Add Answer to:
A glass flask whose volume is 1000.42 cm° at 0.0° C is completely filled with mercury...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A glass flask whose volume is 1000.42 cm at 0.0°C is completely filled with mercury at...

    A glass flask whose volume is 1000.42 cm at 0.0°C is completely filled with mercury at this temperature. When flask and mercury are warmed to 55.6°C, 8.68 cm of mercury overflow. - Part A For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Expansion of mercury. Compute the coefficient of volume expansion of the glass. (The coefficient of volume expansion of the mercury is 18 x 10-5 K-?.). Express your answer in inverse...

  • A glass flask whose volume is 1000.29 cm3 at 0.0∘C is completely filled with mercury at...

    A glass flask whose volume is 1000.29 cm3 at 0.0∘C is completely filled with mercury at this temperature. When flask and mercury are warmed to 55.4 ∘C, 8.98 cm3 of mercury overflow. Compute the coefficient of volume expansion of the glass. (The coefficient of volume expansion of the mercury is 18×10−5K−1.)

  • A glass flask whose volume is 1000 cm3 at a temperature of 0 ∘C is completely filled with mercury at the same temperatur...

    A glass flask whose volume is 1000 cm3 at a temperature of 0 ∘C is completely filled with mercury at the same temperature. When the flask and mercury are warmed together to a temperature of 52.0 ∘C , a volume of 8.50 cm3 of mercury overflows the flask. 1. If the coefficient of volume expansion of mercury is βHg = 1.80×10−4 /K , compute β glass, the coefficient of volume expansion of the glass. Express your answer in inverse kelvins.

  • A glass flask whose volume is 1000 cm3 at a temperature of 0 ∘C is completely...

    A glass flask whose volume is 1000 cm3 at a temperature of 0 ∘C is completely filled with mercury at the same temperature. When the flask and mercury are warmed together to a temperature of 52.0 ∘C , a volume of 8.10 cm3 of mercury overflows the flask. If the coefficient of volume expansion of mercury is βHg = 1.80×10−4 /K , compute βglass, the coefficient of volume expansion of the glass. Express your answer in inverse kelvins.

  • A glass flask whose volume is 1000 cm3 at a temperature of 0.300 ∘C is completely...

    A glass flask whose volume is 1000 cm3 at a temperature of 0.300 ∘C is completely filled with mercury at the same temperature. When the flask and mercury are warmed together to a temperature of 52.0 ∘C , a volume of 8.45 cm3 of mercury overflows the flask. If the coefficient of volume expansion of mercury is βHg = 1.80×10−4 /K , compute βglass, the coefficient of volume expansion of the glass. Express your answer in inverse kelvins.

  • A glass flask whose volume is 1000 cm3 at a temperature of 0 ∘C is completely...

    A glass flask whose volume is 1000 cm3 at a temperature of 0 ∘C is completely filled with mercury at the same temperature. When the flask and mercury are warmed together to a temperature of 52.0 ∘C , a volume of 8.50 cm3 of mercury overflows the flask. 1. If the coefficient of volume expansion of mercury is βHg = 1.80×10−4 /K , compute βglass, the coefficient of volume expansion of the glass. Express your answer in inverse kelvins.

  • A glass flask whose volume is 1000 cm3 at a temperature of 1.00 ∘C is completely...

    A glass flask whose volume is 1000 cm3 at a temperature of 1.00 ∘C is completely filled with mercury at the same temperature. When the flask and mercury are warmed together to a temperature of 52.0 ∘C , a volume of 8.05 cm3 of mercury overflows the flask If the coefficient of volume expansion of mercury is βHg = 1.80×10−4 /K , compute βglass, the coefficient of volume expansion of the glass. Express your answer in inverse kelvins.

  • A glass flask whose volume is 1000 cm3 at a temperature of 0 ∘C is completely...

    A glass flask whose volume is 1000 cm3 at a temperature of 0 ∘C is completely filled with mercury at the same temperature. When the flask and mercury are warmed together to a temperature of 52.0 ∘C , a volume of 8.10 cm3 of mercury overflows the flask. If the coefficient of volume expansion of mercury is βHg = 1.80×10−4 /K , compute βglass, the coefficient of volume expansion of the glass.

  • A glass flask whose volume is 1000 cm3 at a temperature of 1.00 ∘C is completely...

    A glass flask whose volume is 1000 cm3 at a temperature of 1.00 ∘C is completely filled with mercury at the same temperature. When the flask and mercury are warmed together to a temperature of 52.0 ∘C , a volume of 8.25 cm3 of mercury overflows the flask. If the coefficient of volume expansion of mercury is βHg = 1.80×10−4 /K , compute βglass, the coefficient of volume expansion of the glass.

  • A glass flask whose volume is 1000 cm3 at a temperature of 0.600 ∘C is completely...

    A glass flask whose volume is 1000 cm3 at a temperature of 0.600 ∘C is completely filled with mercury at the same temperature. When the flask and mercury are warmed together to a temperature of 52.0 ∘C , a volume of 8.00 cm3 of mercury overflows the flask. If the coefficient of volume expansion of mercury is βHg = 1.80×10−4 /K , compute βglass, the coefficient of volume expansion of the glass.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT