Question

The fiqure below shows a solid cube with a mass m on an inclined plane, at angle e above horizontal. R The cube is attached a

2 0
Add a comment Improve this question Transcribed image text
Answer #1

We need to understand the constraint equations relating the angular speed of reel and velocity of the string. And then, we can conserve the energy to find the angular speed.Let the speed of m, when spring is at relaned position be umis the speed of the string = speed of circumforseme of the reel.

Add a comment
Know the answer?
Add Answer to:
The fiqure below shows a solid cube with a mass m on an inclined plane, at...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The reel shown in Figure P10.70 has radius R and moment of inertia I. One end...

    The reel shown in Figure P10.70 has radius R and moment of inertia I. One end of the block of mass m is connected to a spring of force constant k and the other end is fastened to a cord wrapped around the reel. The reel axle and the incline are frictionless. The reel is wound counterclockwise so that the spring stretches a distance d from its unstretched position and is then released from rest. (a) Find the angular speed...

  • Just need part b please and thank you A smooth cube of mass m and edge...

    Just need part b please and thank you A smooth cube of mass m and edge length r slides with speed v on a horizontal surface with negligible friction. The cube then moves up a smooth incline that makes an angle theta with the horizontal. A cylinder of mass m and radius r rolls without slipping with its center of mass moving with speed v and encounters an incline of the same angle of inclination but with sufficient friction that...

  • 2. A uniform, solid cylinder with mass M and radius 2R is on an incline plane with angle of inclination of 6. A str...

    2. A uniform, solid cylinder with mass M and radius 2R is on an incline plane with angle of inclination of 6. A string is attached by a yoke to a frictionless axle through the center of the cylinder so that the cylinder can rotate about the axle. The string runs over a disk-shaped pulley with mass M and radius R that is mounted on a frictionless axle through its center. A block of mass M is suspended from the...

  • A block of mass m = 3.5 kg is on an inclined plane with a coefficient...

    A block of mass m = 3.5 kg is on an inclined plane with a coefficient of friction μ1 = 0.31, at an initial height h = 0.53 m above the ground. The plane is inclined at an angle θ = 54°. The block is then compressed against a spring a distance Δx = 0.11 m from its equilibrium point (the spring has a spring constant of k1 = 39 N/m) and released. At the bottom of the inclined plane...

  • (0%) Problem 12: Ablock of mass m 2.1 kg is on an inclined plane with a...

    (0%) Problem 12: Ablock of mass m 2.1 kg is on an inclined plane with a coefficient of friction u 0.36, at an initial height h = 0.44 m above the ground. The plane is inclined at an angle 0 51°. The block is then compressed against a spring a distance Ax 0.17m from its equilibrium point (the spring has a spring constant of ky =27 N/m) and released. At the bottom of the inclined plane is a horizontal plane...

  • A rod of length L and negligible mass is attached to a uniform disk of mass M and radius R (see figure below).

    A rod of length L and negligible mass is attached to a uniform disk of mass M and radius R (see figure below). A string is wrapped around the disk, and you pull on the string with a constant force F. Two small balls each of mass m slide along the rod with negligible friction. The apparatus starts from rest, and when the center of the disk has moved a distance d, a length of strings has come off the...

  • As shown in Figure 3(a), a wooden block B with mass mg 2.4 kg on a rough inclined plane is connected to a massless sp...

    As shown in Figure 3(a), a wooden block B with mass mg 2.4 kg on a rough inclined plane is connected to a massless spring (k 160 N/m) by a massless cord passing over a pulley P of radius R 0.25 m and mass M, 0.60 kg. The angle of the inclined plane is 0 37 and the coefficients of static and kinetic frictions are g 0.35 and A 0.30 respectively The frictional force at the axle of the pulley...

  • Question 7(a). A string is wound around a uniform disc of mass M and radius R....

    Question 7(a). A string is wound around a uniform disc of mass M and radius R. The dise is released from rest with the string vertical and its top end tied to a fixed bar (Fig.4). Find 6 the tension in the string. (ii) the magnitude of acceleration of the centre of mass. (ii) the speed of the centre of mass of the disc after it has descended through the distance h. 2 121 121 Figure 4 Question 7(b). A...

  • A thin ring of radius R and mass M rolls without slipping along a level track....

    A thin ring of radius R and mass M rolls without slipping along a level track. It has an initial linear, or translational velocity (of the center of gravity) of 3.50 m/s. The ring rolls to the end of the track, where the track curves upward. The center of gravity of the ring rises to a maximum height h above its initial level. Note that V is the symbol for the linear, or translational velocity (of the center of gravity)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT