Question

A thin ring of radius R and mass M rolls without s

0 0
Add a comment Improve this question Transcribed image text
Answer #1

here,

initial linear velocity, u = 3.50 m/s

moment of inertia of ring, I =

Part a:
linear veloicty = angular velocity * radius

angular velocity, w = u/r

option b is correct

Part b:
Total kinetic energy = 0.5*m*u^2 + 0.5*I*w^2
Total kinetic energy = 0.5*m*u^2 + 0.5*mr^2 *(u^2/r^2)
Total kinetic energy = 0.5*m(u^2 + u^2)
Total kinetic energy = mu^2

option d correct

Part c:
From conservation of energy :
Total Kinetic energy = Potential energy gained by ring
m*u^2 = m*g*h

height, h = u^2/g
height, h = 3.50^2/9.81
height, h = 1.249 m

Add a comment
Know the answer?
Add Answer to:
A thin ring of radius R and mass M rolls without slipping along a level track....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A hoop with mass, M, and radius, R, rolls along a level surface without slipping with...

    A hoop with mass, M, and radius, R, rolls along a level surface without slipping with a linear speed, v. What is the ratio of rotational to linear kinetic energy? (For a hoop, I = MR2.)

  • A very thin circular hoop of mass(m) and radius(r) rolls without slipping down a ramp inclined at an angle(theta) wit...

    A very thin circular hoop of mass(m) and radius(r) rolls without slipping down a ramp inclined at an angle(theta) with the horizontal, as shown in the figure.What is the acceleration(a) of the center of the hoop? Express your answer in terms of some or all of the variablesm,r, theta, and the magnitude of the acceleration due to gravity(g).

  • Problem 4. A solid sphere of mass m and radius r rolls without slipping along the...

    Problem 4. A solid sphere of mass m and radius r rolls without slipping along the track shown below. It starts from rest with the lowest point of the sphere at height h 3R above the bottom of the loop of radius R, much larger than r. Point P is on the track and it is R above the bottom of the loop. The moment of inertia of the ball about an axis through its center is I-2/S mr. The...

  • A thin hoop of radius r = 0.82 m and mass M = 7.3 kg rolls...

    A thin hoop of radius r = 0.82 m and mass M = 7.3 kg rolls without slipping across a horizontal floor with a velocity v = 1.1 m/s. It then rolls up an incline with an angle of inclination theta = 44 degrees. a) What is the maximum height h reached by the hoop before rolling back down the incline? b) Now, suppose a uniform solid sphere is used instead of a hoop. Use the same values of r,...

  • 81. A uniform disk with a mass of m and a radius of r rolls without...

    81. A uniform disk with a mass of m and a radius of r rolls without slipping along a horizontal surface and ramp, as shown above. The disk has an initial velocity of v. What is the maximum height h to which the center of mass of the disk rises? u2 2g 3u (A) hU (B) h=- u2 (C) h-U 2g

  • A hoop of mass M = 2 kg and radius R = 0.4 m rolls without slipping down a hill, as shown in the figure.

    A hoop of mass M = 2 kg and radius R = 0.4 m rolls without slipping down a hill, as shown in the figure. The lack of slipping means that when the center of mass of the hoop has speed v, the tangential speed of the hoop relative to the center of mass is also equal to VCM, since in that case the instantaneous speed is zero for the part of the hoop that is in contact with the...

  • Consider a hoop of radius R and mass M rolling without slipping. Which form of its...

    Consider a hoop of radius R and mass M rolling without slipping. Which form of its kinetic energy is larger, translational or rotational? A. Its translational kinetic energy is larger than its rotational kinetic energy. B. Its rotational kinetic energy is larger than its translational kinetic energy. C. Both will have the same value D. You need to know the R of the hoop E. You need to know the M of the hoop anillo "hoop"

  • A hoop of mass M = 3 kg and radius R = 0.4 m rolls without...

    A hoop of mass M = 3 kg and radius R = 0.4 m rolls without slipping down a hill, as shown in the figure. The lack of slipping means that when the center of mass of the hoop has speed v, the tangential speed of the hoop relative to the center of mass is also equal to vCM, since in that case the instantaneous speed is zero for the part of the hoop that is in contact with the...

  • a small sphere of radius (r) =1.5cm rolls without slipping on the track whose radius (R)...

    a small sphere of radius (r) =1.5cm rolls without slipping on the track whose radius (R) =26cm. the sphere starts rolling at a height (R) above the bottom of the track. when it leaves the track after passing through an angle of 135 degrees. a. at what distance D from the base of the track will the sphere hit the ground. Please specify how you find x and y components of the velocity.

  • A uniform drum of radius R and mass M rolls without slipping down a plane inclined...

    A uniform drum of radius R and mass M rolls without slipping down a plane inclined at angle . Find its acceleration along the plane (translational acceleration). The moment of inertia of the drum about its axis through the center is I = MR^2/2 .

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT