Question

A hoop of mass M = 3 kg and radius R = 0.4 m rolls without...

A hoop of mass M = 3 kg and radius R = 0.4 m rolls without slipping down a hill, as shown in the figure. The lack of slipping means that when the center of mass of the hoop has speed v, the tangential speed of the hoop relative to the center of mass is also equal to vCM, since in that case the instantaneous speed is zero for the part of the hoop that is in contact with the ground (v − v = 0). Therefore, the angular speed of the rotating hoop is ω = vCM/R.

(a) The initial speed of the hoop is vi = 2 m/s, and the hill has a height h = 4.5 m. What is the speed vf at the bottom of the hill?

vf = 6.94 Correct

(b) Replace the hoop with a bicycle wheel whose rim has mass M = 3 kg and radius R = 0.4 m, and whose hub has mass m = 2.0 kg, as shown in the figure. The spokes have negligible mass. What would the bicycle wheel's speed be at the bottom of the hill? (Assume that the wheel has the same initial speed and start at the same height as the hoop in part (a)).

vf = ????

0 0
Add a comment Improve this question Transcribed image text
Answer #1

***************************************************************************************************
This concludes the answers. Check the answer and let me know if it's correct. If you need any more clarification, modification or correction, feel free to ask.....

Add a comment
Know the answer?
Add Answer to:
A hoop of mass M = 3 kg and radius R = 0.4 m rolls without...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A hoop of mass M = 2 kg and radius R = 0.4 m rolls without slipping down a hill, as shown in the figure.

    A hoop of mass M = 2 kg and radius R = 0.4 m rolls without slipping down a hill, as shown in the figure. The lack of slipping means that when the center of mass of the hoop has speed v, the tangential speed of the hoop relative to the center of mass is also equal to VCM, since in that case the instantaneous speed is zero for the part of the hoop that is in contact with the...

  • A wheel rolls up a 3.5m hill without slipping. The wheel has a mass of 20kg,...

    A wheel rolls up a 3.5m hill without slipping. The wheel has a mass of 20kg, a radius of 0.4 m and a radius of gyration of 0.3m. What is the minimum required speed of the center of the wheel (ve) at the bottom o the hill, so that it will make it to the top of the hill? Wheel: R 0.4 m k 0.3 m m 20 kg 3.5 m ve? 4. Piston B is confined to move in...

  • A thin hoop of radius r = 0.82 m and mass M = 7.3 kg rolls...

    A thin hoop of radius r = 0.82 m and mass M = 7.3 kg rolls without slipping across a horizontal floor with a velocity v = 1.1 m/s. It then rolls up an incline with an angle of inclination theta = 44 degrees. a) What is the maximum height h reached by the hoop before rolling back down the incline? b) Now, suppose a uniform solid sphere is used instead of a hoop. Use the same values of r,...

  • A hoop with mass, M, and radius, R, rolls along a level surface without slipping with...

    A hoop with mass, M, and radius, R, rolls along a level surface without slipping with a linear speed, v. What is the ratio of rotational to linear kinetic energy? (For a hoop, I = MR2.)

  • A circular hoop of mass m, radius r, and infinitesimal thickness rolls without slipping down a ramp inclined at an angle θ with the horizontal. (Intro 1figure)

    A circular hoop of mass m, radius r, and infinitesimal thickness rolls without slipping down a ramp inclined at an angle θ with the horizontal. (Intro 1figure)part a)What is the acceleration of the center of the hoop?Express the acceleration in terms of physical constants and all or some of the quantities m,r,and θ.part b)What is the minimum coefficient of (static)friction  needed for the hoop to roll without slipping? Note that it is static and not kinetic friction that is relevant here,...

  • Rolling Motion Up and Down an Incline (a) A rolling (without slipping) hoop with a radius...

    Rolling Motion Up and Down an Incline (a) A rolling (without slipping) hoop with a radius of 0.10 m and a mass of 1.80 kg climbs an incline. At the bottom of the incline, the speed of the hoop's center-of-mass is v. = 7.00 m/s. The incline angle is NOT needed in this problem. Vf=0 Max h What is the angular speed of the hoop's rotation? Enter a number rad/s Submit (5 attempts remaining) What is the hoop's translational kinetic...

  • Q10 A hollow sphere and a hoop of the same mass and radius are released at...

    Q10 A hollow sphere and a hoop of the same mass and radius are released at the same time at the top of an inclined plane. If both are uniform, (1) Which one reaches the bottom of the incline first if there is no slipping? (2) A uniform hollow sphere of mass 120 kg and radius 1.7 m starts from rest and rolls without slipping dow an inclined plane of vertical height 5.3 m. What is the translational speed of...

  • Scenario A thin hoop of mass M and radius R is released from rest at the...

    Scenario A thin hoop of mass M and radius R is released from rest at the top of a ramp of length L as shown at right. The ramp makes an angle with respect to a horizontal tabletop to which the ramp is fixed. The table top is height H above the floor. Assume that the hoop rolls without slipping down the ramp and across the table. Express all algebraic answers in terms of given quantities and fundamental constants. PARTC:...

  • The wheel consists of a 2.5-kg rim of radius r = 215 mm with hub and...

    The wheel consists of a 2.5-kg rim of radius r = 215 mm with hub and spokes of negligible mass. The wheel is mounted on the 3.0-kg yoke OA with mass center at G and with a radius of gyration about 0 of 350 mm. If the assembly is released from rest in the horizontal position shown and if the wheel rolls on the circular surface without slipping, compute the velocity of point A when it reaches A'. Assume d...

  • A solid cylinder of radius R and mass m, and moment of inertia mR2/2, starts from rest and rolls down a hill without slipping.

    A solid cylinder of radius R and mass m, and moment of inertia mR2/2, starts from rest and rolls down a hill without slipping. At the bottom of the hill, the speed of the center of mass is 4.7 m/sec. A hollow cylinder (moment of inertia mR2) with the same mass and same radius also rolls down the same hill starting from rest. What is the speed of the center of mass of the hollow cylinder at the bottom of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT