Question

Scenario A thin hoop of mass M and radius R is released from rest at the top of a ramp of length L as shown at right. The ramPARTC: Derive an expression for the speed of the center of mass of the hoop when it reaches the bottom of the ramp.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

h = L sino 2 Using conservation of the energy 1 mgh = mv + Int Mere I = MR² , w = So mg h = m + 1 - mig h = mv + mv samy = mg

Add a comment
Know the answer?
Add Answer to:
Scenario A thin hoop of mass M and radius R is released from rest at the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Please help with problem 52 Rotational Motion Problem Solving "An expert is a person who has...

    Please help with problem 52 Rotational Motion Problem Solving "An expert is a person who has made all the mistakes that can be made in a very narrow field." -Niels Bohr 52. A thin hoop of mass M, radius R. and rotational inertia MR is released from lest from the top of the ramp of length L above. The ramp makes an angle () with respect to a horizontal tabletop to which the ramp is fixed. The table is a...

  • A315-N thin cylindrical shell, or hoop, of radius 0.35 m is released from rest and rolls...

    A315-N thin cylindrical shell, or hoop, of radius 0.35 m is released from rest and rolls without slipping from the top to the bottom of a ramp of length 4.5 m that is inclined at an angle of 20 degrees with the horizontal as shown in the figure below a. What type(s) of energy does the object have when it is released? Gravitational Potential Energy (GPE) Rotational Kinetic Frey(KE. Translational Kinetic Energy (K) Both KE, and KE GPE, KE, and...

  • A thin hoop of radius r = 0.82 m and mass M = 7.3 kg rolls...

    A thin hoop of radius r = 0.82 m and mass M = 7.3 kg rolls without slipping across a horizontal floor with a velocity v = 1.1 m/s. It then rolls up an incline with an angle of inclination theta = 44 degrees. a) What is the maximum height h reached by the hoop before rolling back down the incline? b) Now, suppose a uniform solid sphere is used instead of a hoop. Use the same values of r,...

  • Q10 A hollow sphere and a hoop of the same mass and radius are released at...

    Q10 A hollow sphere and a hoop of the same mass and radius are released at the same time at the top of an inclined plane. If both are uniform, (1) Which one reaches the bottom of the incline first if there is no slipping? (2) A uniform hollow sphere of mass 120 kg and radius 1.7 m starts from rest and rolls without slipping dow an inclined plane of vertical height 5.3 m. What is the translational speed of...

  • A circular hoop of mass m, radius r, and infinitesimal thickness rolls without slipping down a ramp inclined at an angle θ with the horizontal. (Intro 1figure)

    A circular hoop of mass m, radius r, and infinitesimal thickness rolls without slipping down a ramp inclined at an angle θ with the horizontal. (Intro 1figure)part a)What is the acceleration of the center of the hoop?Express the acceleration in terms of physical constants and all or some of the quantities m,r,and θ.part b)What is the minimum coefficient of (static)friction  needed for the hoop to roll without slipping? Note that it is static and not kinetic friction that is relevant here,...

  • A hoop of radius 0.50 m and a mass of 0.020 kg is released from rest and allowed to roll down to the bottom of an inclined plane.

    A hoop of radius 0.50 m and a mass of 0.020 kg is released from rest and allowed to roll down to the bottom of an inclined plane. The hoop rolls down the incline dropping a vertical distance of 3.0 m. Assume that the hoop rolls without slipping. (a) Determine the total kinetic energy at the bottom of the incline. (b) How fast is the hoop moving at the bottom of the incline?

  • A very thin circular hoop of mass(m) and radius(r) rolls without slipping down a ramp inclined at an angle(theta) wit...

    A very thin circular hoop of mass(m) and radius(r) rolls without slipping down a ramp inclined at an angle(theta) with the horizontal, as shown in the figure.What is the acceleration(a) of the center of the hoop? Express your answer in terms of some or all of the variablesm,r, theta, and the magnitude of the acceleration due to gravity(g).

  • A cylinder of radius R=15.0cm and mass m=900g is released from rest at the top of...

    A cylinder of radius R=15.0cm and mass m=900g is released from rest at the top of an incline of height h=10.0m. It rolls, without slipping, to the bottom of the incline. Calculate cylinder's: a)moment of inertia about its center of rotation. b)angular velocity at the bottom of the incline.

  • Q4 (15 points): A uniform hoop of radius R - 15 cm and mass M 1.2...

    Q4 (15 points): A uniform hoop of radius R - 15 cm and mass M 1.2 kg is placed at the top of an incline of height h-2 m. The surface of the incline makes an angle θ-30° with the horizontal. The hoop is released from rest and rolls without slipping. m MR2 for hoopl a) What is the acceleration of its center of mass (açom) during rolling? b) What is the force of friction in unit vector notation required...

  • LULU UW Luove answers (5 pts) 6. A hollow thin-walled sphere (I =-MR) is released from...

    LULU UW Luove answers (5 pts) 6. A hollow thin-walled sphere (I =-MR) is released from rest at the top of a ramp that is at an angle of 30.0° above the horizontal. The top of the ramp is a vertical distance of 2.00 m above the bottom of the ramp. If the sphere rolls without slipping as it moves down the ramp, what is the translational speed of its center of mass when it reaches the bottom of the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT