Question

Consider a hoop of radius R and mass M rolling without slipping. Which form of its...

Consider a hoop of radius R and mass M rolling without slipping. Which form of its kinetic energy is larger, translational or rotational?

A. Its translational kinetic energy is larger than its rotational kinetic energy.

B. Its rotational kinetic energy is larger than its translational kinetic energy.

C. Both will have the same value

D. You need to know the R of the hoop

E. You need to know the M of the hoop

anillo hoop

anillo "hoop"
0 0
Add a comment Improve this question Transcribed image text
Answer #1

here,

when the hoop is rolling without slipping

the moment of inertia of hoop , I = M * R^2

the rotational kinetic energy , KEr = 0.5 * I * w^2

KEr = 0.5 * (M * R^2) * ( v/r)^2

KEr = 0.5 * M * v^2

the translational kinetic energy , KEt = 0.5 * M * v^2

so, C) Both will have same value

Add a comment
Answer #2
Both are same
Add a comment
Know the answer?
Add Answer to:
Consider a hoop of radius R and mass M rolling without slipping. Which form of its...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Rolling Motion Up and Down an Incline (a) A rolling (without slipping) hoop with a radius...

    Rolling Motion Up and Down an Incline (a) A rolling (without slipping) hoop with a radius of 0.10 m and a mass of 1.80 kg climbs an incline. At the bottom of the incline, the speed of the hoop's center-of-mass is v. = 7.00 m/s. The incline angle is NOT needed in this problem. Vf=0 Max h What is the angular speed of the hoop's rotation? Enter a number rad/s Submit (5 attempts remaining) What is the hoop's translational kinetic...

  • A hoop with mass, M, and radius, R, rolls along a level surface without slipping with...

    A hoop with mass, M, and radius, R, rolls along a level surface without slipping with a linear speed, v. What is the ratio of rotational to linear kinetic energy? (For a hoop, I = MR2.)

  • Multiple Choice (select the best answer) (2 pts each 1. Consider a uniform hoop of radius...

    Multiple Choice (select the best answer) (2 pts each 1. Consider a uniform hoop of radius R and mass M rolling without slipping. Which is larger, its translational kinetic energy or its rotational kinetic energy? A) Translational kinetic energy is larger B) Rotational kinetic energy is larger. C) Both are equal. D) You need to know the speed of the hoop to tell. 2. A disk and a hoop of the same mass and radius are released at the same...

  • A uniform cylinder of radius r15.0 cm and mass m 1.70 kg is rolling without slipping...

    A uniform cylinder of radius r15.0 cm and mass m 1.70 kg is rolling without slipping on a horizontal tabletop. The cylinder's center of mass is observed to have a speed of 4.60 m/s at a given instant. (a) What is the translational kinetic energy of the cylinder at that instant? J (b) What is the rotational kinetic energy of the cylinder around its center of mass at that instant? J (c) What is the total kinetic energy of the...

  • Q10 A hollow sphere and a hoop of the same mass and radius are released at...

    Q10 A hollow sphere and a hoop of the same mass and radius are released at the same time at the top of an inclined plane. If both are uniform, (1) Which one reaches the bottom of the incline first if there is no slipping? (2) A uniform hollow sphere of mass 120 kg and radius 1.7 m starts from rest and rolls without slipping dow an inclined plane of vertical height 5.3 m. What is the translational speed of...

  • Consider a uniform disk of mass m, and radius R that is rolling with slipping. The surface has a ...

    ANS: PLEASE USE LAGRANGIAN, THANK YOU, WILL UPVOTE GOOD ANSWER IMMEDIATELY Consider a uniform disk of mass m, and radius R that is rolling with slipping. The surface has a coefficient of kinetic friction a) Find the equations of motion. b) Next consider the same disk when it is rolling without slipping. Find the EOM using either x or θ. Hint: be careful with the generalized force for θ. If we label point P as the point on the disk...

  • A solid sphere (mass 8.17kg], radius 59.8 cm) is rolling without slipping on a horizontal table....

    A solid sphere (mass 8.17kg], radius 59.8 cm) is rolling without slipping on a horizontal table. What fraction of its total kinetic energy is translational kinetic energy?

  • A thin ring of radius R and mass M rolls without slipping along a level track....

    A thin ring of radius R and mass M rolls without slipping along a level track. It has an initial linear, or translational velocity (of the center of gravity) of 3.50 m/s. The ring rolls to the end of the track, where the track curves upward. The center of gravity of the ring rises to a maximum height h above its initial level. Note that V is the symbol for the linear, or translational velocity (of the center of gravity)...

  • A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest and rolls without slipping down a 30.0° incline that is 10.0 m long.

    A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest and rolls without slipping down a 30.0° incline that is 10.0 m long.A) Calculate its translational speed when it reaches the bottom.B) Calculate its rotational speed when it reaches the bottom.      C) What is the ratio of translational to rotational kinetic energy at the bottom?        D) Avoid putting in numbers until the end so you can answer: do your...

  • 6. Consider the system shown: m, J, R The wheel with mass m, radius R, and rotational moment of i...

    6. Consider the system shown: m, J, R The wheel with mass m, radius R, and rotational moment of inertia J rolls without slipping down the incline shown. The spring affixed to its axle has rest length h, and is neither extended nor compressed when r 0. The external force F is directed parallel to the direction of rolling. Find the total kinetic energy and potential energy in the system. Assume the gravitational potential energy to be zero when the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT