Question

The temperature of 5.58 mol of an ideal diatomic gas is increased by 31.1 ˚C without...

The temperature of 5.58 mol of an ideal diatomic gas is increased by 31.1 ˚C without the pressure of the gas changing. The molecules in the gas rotate but do not oscillate. (a) How much energy is transferred to the gas as heat? (b) What is the change in the internal energy of the gas? (c) How much work is done by the gas? (d) By how much does the rotational kinetic energy of the gas increase?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
The temperature of 5.58 mol of an ideal diatomic gas is increased by 31.1 ˚C without...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Chapter 19, Problem 053 Suppose 2.58 mol of an ideal diatomic gas, with molecular rotation but...

    Chapter 19, Problem 053 Suppose 2.58 mol of an ideal diatomic gas, with molecular rotation but not oscillation, experienced a temperature increase of 61.4 K under constant-pressure conditions. What are (a) the energy transferred as heat Q, (b) the change ΔEit in internal energy of the gas (c) the work done by the gas and (d) the change ΔK in the total translational kinetic energy of the gas? (a) Number (b) Number (c) Number (d) Number Units Units Units (...

  • In the figure, 1.73 mole of an ideal diatomic gas can go from a to c...

    In the figure, 1.73 mole of an ideal diatomic gas can go from a to c along either the direct (diagonal) path ac or the indirect path abc. The scale of the vertical axis is set by pab = 6.47 kPa and pc = 3.00 kPa, and the scale of the horizontal axis is set by Vbc = 6.73 m3 and Va = 2.08 m3. (The molecules rotate but do not oscillate.) During the transition along path ac, (a) what...

  • In the figure, 1.51 mole of an ideal diatomic gas can go from a to c...

    In the figure, 1.51 mole of an ideal diatomic gas can go from a to c along either the direct (diagonal) path ac or the indirect path abc. The scale of the vertical axis is set by Pab = 5.78 kPa and pc-2.38 kPa, and the scale of the horizontal axis is set by Voc-6.54 m3 and v, = 2.89 m3. (The molecules rotate but do not oscillate.) During the transition along path ac, (a) what is the change in...

  • A diatomic ideal gas expands from a volume of VA-1.00 mºto V, - 3.00 m along...

    A diatomic ideal gas expands from a volume of VA-1.00 mºto V, - 3.00 m along the path shown in the figure below. The initial pressure is PA-2.00 x 10 Pa and there are 67.3 mol of gas. P(10%Pa) 4.00 8.00 2.00 1.00 1.00 2.00 3.00 100V (m) (a) Calculate the work done on the gas during this process. (b) Calculate the change in temperature of the gas. (c) Calculate the change in internal energy of the gas. (Take the...

  • The temperature of 1.75 mol of an ideal monatomic gas is raised 17.8 K at constant...

    The temperature of 1.75 mol of an ideal monatomic gas is raised 17.8 K at constant volume.What are (a) the work W done by the gas, (b) the energy transferred as heat Q, (c) the change ΔEint in the internal energy of the gas, and (d) the change ΔK in the average kinetic energy per atom?

  • The temperature of 2.00 mol of an ideal monatomic gas is raised 15.0 K at constant...

    The temperature of 2.00 mol of an ideal monatomic gas is raised 15.0 K at constant volume. What are (a) the work W done by the gas, (b) the energy transferred as heat Q , (c) the change ?Eint in the internal energy of the gas, and (d) the change ?K in the average kinetic energy per atom?

  • 1. Ideal gas with internal degrees of freedom. Consider a free gas of diatomic molecules at...

    1. Ideal gas with internal degrees of freedom. Consider a free gas of diatomic molecules at temperature 7. Diatomic molecules have internal rotational excitations. The rotational energy levels of a single molecule are given by J(J+1) 2/2 J = 0,1,23 where J is the angular momentum and I is the moment of inertia. The degeneracy of the level J is 2J +1. Neglect any interaction between the molecules in the gas. The temperature is high enough so that the statistic...

  • At a given temperature, the difference between the specific heats of a diatomic ideal gas and...

    At a given temperature, the difference between the specific heats of a diatomic ideal gas and a monatomic gas is partly due to rotational energy of the diatomic molecules. A quantum rigid rotator has energy levels Erot (1) with degeneration given by ħ2 Erot(1) = 1(1+1) g() = 21+1, 1 = 0, 1, 2,... g(0) 21 where I is the moment of inertia. (a) Find the canonical partition function of a gas of N non-interacting diatomic molecules. (b) Evaluate the...

  • We have a diatomic ideal gas with a y of 5/2. It starts with an initial...

    We have a diatomic ideal gas with a y of 5/2. It starts with an initial pressure of 1kPa, an initial temperature of 100 K, and an initial volume of 10 m^3 a) The gas undergoes an adiabatic compression, halving its volume. What is its new pressure? b) What was the work done? c) What was the heat flow? d) Now, keeping pressure constant, heat is put into the gas, doubling the volume. How much heat is added? e) What...

  • A cylinder contains 9.8 moles of ideal gas, initially at a temperature of 119°C. The cylinder is provided with a frictio...

    A cylinder contains 9.8 moles of ideal gas, initially at a temperature of 119°C. The cylinder is provided with a frictionless piston, which maintains a constant pressure of 7.4 × 105 Pa on the gas. The gas is cooled until its temperature has decreased to 27°C. For the gas CV = 14.41 J/mol ∙ K, and the ideal gas constant R = 8.314 J/mol · K. (a) Find the work done by (or on) the gas during this process. Is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT