Question

A truck with a mass of 1300 kg and moving with a speed of 12.0 m/s rear-ends a 843 kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. Find the speed of both vehicles after the collision in meters per second

A 61.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped at him at a velocity of 33.0 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What would their final velocities (in m/s) be in this case? (Assume the original direction of the ice puck toward the goalie is in the positive direction Indicate the direction with the sign of your answer.)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

frown moment um conservne, mentun before collision metm Sice collision is elashc, voit of approach E veleparahon arahen***************************************************************************************************
Check the answer and let me know immediately if you find something wrong... I will rectify the mistakes asap if any

Add a comment
Know the answer?
Add Answer to:
A truck with a mass of 1300 kg and moving with a speed of 12.0 m/s...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 75.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped...

    A 75.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped at him at a velocity of 18.0 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What would their final velocities (in m/s) be in this case? (Assume the original direction of the ice puck toward the goalie is in the positive direction. Indicate the direction with the...

  • A 75.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped...

    A 75.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped at him at a velocity of 18.0 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What would their final velocities (in m/s) be in this case? (Assume the original direction of the ice puck toward the goalie is in the positive direction. Indicate the direction with the...

  • A truck with a mass of 1800 kg and moving with a speed of 14.0 m/s...

    A truck with a mass of 1800 kg and moving with a speed of 14.0 m/s rear-ends a 603 kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. Find the speed of both vehicles after the collision in meters per second. car = m/s Vtruck = m/s

  • A truck with a mass of 1800 kg and moving with a speed of 15.0 m/s...

    A truck with a mass of 1800 kg and moving with a speed of 15.0 m/s rear-ends a 591 kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. Find the speed of both vehicles after the collision in meters per second.

  • A truck with a mass of 1510 kg and moving with a speed of 14.5 m/s...

    A truck with a mass of 1510 kg and moving with a speed of 14.5 m/s rear-ends a 671 kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. Find the speed of both vehicles after the collision in meters per second. m/s vcar truck m/s

  • A truck with a mass of 1370 kg and moving with a speed of 11.5 m/s...

    A truck with a mass of 1370 kg and moving with a speed of 11.5 m/s rear-ends a 743 kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. Find the speed of both vehicles after the collision in meters per second. vcar = m/s vtruck = m/s

  • A 70.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped...

    A 70.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped at him at a velocity of 35.0 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What is the final speed of the puck? a)35.1 m/s b)35.0 m/s c)34.9 m/s d)34.8 m/s

  • A 70.0 kg ice hockey goalie, originally at rest, has a 0.170 kg hockey puck slapped...

    A 70.0 kg ice hockey goalie, originally at rest, has a 0.170 kg hockey puck slapped at him at a velocity of 41.5 m/s. Suppose the goalie and the puck have an elastic collision, and the puck is reflected back in the direction from which it came. What would the final velocities of the goalie and the puck be in this case? Assume that the collision is completely elastic. vgoalie=   m/s vpuck=   m/s

  • Part A: a 77.0 kg ice hockey goalie, originally at rest, catches a 0.140 kg hockey...

    Part A: a 77.0 kg ice hockey goalie, originally at rest, catches a 0.140 kg hockey puck slapped at him at a velocity of 29.0 m/s. The goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What was the final velocity of the goalie? Part B: What was the final velocity of the puck?

  • Attempt 2 A 70.0 kg ice hockey goalie, originally at rest, has a 0.110 kg hockey...

    Attempt 2 A 70.0 kg ice hockey goalie, originally at rest, has a 0.110 kg hockey puck slapped at him at a velocity of 39.5 m/s. Suppose the goalie and the puck have an elastic collision, and the puck is reflected back in the direction from which it came. What would the final velocities of the goalie and the puck be in this case? Assume that the collision is completely elastic. ?goalie= ________m/s ?puck= ___________m/s

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT