Question

2. Indicate True or False for the following scenarios and explain if the reaction occurs using “higher than and lower than
(intel V IA ost Lab Questions: To receive full credit, you must SHOW ALL YOUR WORK!! Jse the table of reduction half reactio
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Silver Metal will dissolve in nitric acid, libe fabe Justification : Hall call ( zag 2 Agh the @ xN. reactions. L 247 the ->(4. in metal will reduce coth, but not Sath. false Justification: From the chants, we get that oxidation of Tim metad cannot

Add a comment
Know the answer?
Add Answer to:
2. Indicate True or False for the following scenarios and explain if the reaction occurs using...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Post Lab Questions: To receive full credit, you must SHOW ALL YOUR WORK!! Use the table...

    Post Lab Questions: To receive full credit, you must SHOW ALL YOUR WORK!! Use the table of reduction half reactions to answer the following Post-Lab questions: Table 3. Example reduction Reduction Potential Chart half reactions. The easiest to Ce+(aq) + 3e - Ce3+ (aq) reduce is at the top. The more Au3+ (aq) + 3e Au(s) difficult to reduce is at the bottom. Cl2(g) + 2e 2CH(ag) Ag+ (aq) + e- Ag(s) Fe3+ (aq) + e- Fe2+ (aq) AgCl(s) +...

  • Imagine that the hypothetical elements. A B C and D form the ions A2+, B2, C2,...

    Imagine that the hypothetical elements. A B C and D form the ions A2+, B2, C2, and Dar. The following reactions show the interactions that do or do NOT occur. Use this information to order the species in a reduction half reaction table. D2+ + C → C2+ + D Easiest to Hardest to Reduce Oxidize D2+ + B - No reaction C2+ + A - A2+ + C Hardest to Reduce Easiest to Oxidize st Lab Questions: To receive...

  • Standard Electrode Potentials at 25?C Reduction Half-Reaction E?(V) F2(g)+2e? ?2F?(aq) 2.87 Au3+(aq)+3e? ?Au(s) 1.50 Cl2(g)+2e? ?2Cl?(aq)...

    Standard Electrode Potentials at 25?C Reduction Half-Reaction E?(V) F2(g)+2e? ?2F?(aq) 2.87 Au3+(aq)+3e? ?Au(s) 1.50 Cl2(g)+2e? ?2Cl?(aq) 1.36 O2(g)+4H+(aq)+4e? ?2H2O(l) 1.23 Br2(l)+2e? ?2Br?(aq) 1.09 NO3?(aq)+4H+(aq)+3e? ?NO(g)+2H2O(l) 0.96 Ag+(aq)+e? ?Ag(s) 0.80 I2(s)+2e? ?2I?(aq) 0.54 Cu2+(aq)+2e? ?Cu(s) 0.16 2H+(aq)+2e? ?H2(g) 0 Cr3+(aq)+3e? ?Cr(s) -0.73 2H2O(l)+2e? ?H2(g)+2OH?(aq) -0.83 Mn2+(aq)+2e? ?Mn(s) -1.18 How can the table be used to predict whether or not a metal will dissolve in HCl? In HNO3? Drag the terms on the left to the appropriate blanks on the right to...

  • Consider the following species. Cut Ce3+ Ag+ Zn2+ What is the standard potential for the reaction...

    Consider the following species. Cut Ce3+ Ag+ Zn2+ What is the standard potential for the reaction of Cut with Zn2+ to produce Cu2+ and Zn? E = 0.28 X v Will Cut be able to reduce Zn2+ to Zn? no (yes or no) What is the standard potential for the reaction of Ce3+ with Ag! to produce Ag? Ex= 0.90 x v Will Cell be able to reduce Ag! to Ag? yes (yer or no) Ered (V) 0.68 0.52 0.40...

  • 12. Using two half reactions that have NEGATIVE standard reduction potentials results results in a battery...

    12. Using two half reactions that have NEGATIVE standard reduction potentials results results in a battery that... Reduction Half-Reaction F2(g) + 2e →2F(aq) S2082 (aq) + 2e- → 25042 (aq) O2(g) + 4H+ (aq) + 4e → 2H2O(1) Br2(1) + 2e + 2Br (aq) Agt(aq) + e → Ag(s) Fe3+ (aq) + e- → Fe2+ (aq) 126) + 2e → 21 (aq) Cu2+ (aq) + 2e → Cu(s) Sn4+ (aq) + 2e → Sn2+ (aq) S(s) + 2H+ (aq) +...

  • A) Use tabulated electrode potentials to calculate ΔG∘ for the reaction. 2K(s)+2H2O(l)→H2(g)+2OH−(aq)+2K+(aq) B) (Refer to the...

    A) Use tabulated electrode potentials to calculate ΔG∘ for the reaction. 2K(s)+2H2O(l)→H2(g)+2OH−(aq)+2K+(aq) B) (Refer to the following standard reduction half-cell potentials at 25∘C: VO2+(aq)+Ni2+(aq)2H+(aq)++2e−e−→ →Ni(s)VO2+(aq) +H2O(l)E∘=−0.23V E∘=0.99V) An electrochemical cell is based on these two half-reactions: Oxidation:Reduction:Ni(s)VO2+(aq,0.024M)+2H+(aq,1.4M)+e−→→Ni2+(aq,1.8M)+2e−VO2+(aq,1.8M)+H2O(l) Calculate the cell potential under these nonstandard concentrations. C) Standard reduction half-cell potentials at 25∘C Half-reaction E∘ (V ) Half-reaction E∘ (V ) Au3+(aq)+3e−→Au(s) 1.50 Fe2+(aq)+2e−→Fe(s) − 0.45 Ag+(aq)+e−→Ag(s) 0.80 Cr3+(aq)+e−→Cr2+(aq) − 0.50 Fe3+(aq)+3e−→Fe2+(aq) 0.77 Cr3+(aq)+3e−→Cr(s) − 0.73 Cu+(aq)+e−→Cu(s) 0.52 Zn2+(aq)+2e−→Zn(s) − 0.76...

  • 2.87 Ered® (V) 0.68 0.52 0.40 0.34 0.16 Half Reaction F,+ 2e →2F Ag* + e...

    2.87 Ered® (V) 0.68 0.52 0.40 0.34 0.16 Half Reaction F,+ 2e →2F Ag* + e → Ag Co3 + e + CO2- H2O2 + 2H+ + 2e → 2H,0 Ce4+ + e → Ce+ PbO, + 4H+ + SO42- + 2e → PbSO, + 2H,0 Mno, + 4H+ + 3e → MnO2 + 2H,0 2e + 2H+ + 10, → 103 + H2O Mn0, +8H+ + 5e → Mn2+ + 4H,0 Aul+ + 3e → Au Cl2 + 2e...

  • Selective Reduction The standard reduction potential for the half-reaction: Sn4+ + 2e - Sn2+ is +0.15...

    Selective Reduction The standard reduction potential for the half-reaction: Sn4+ + 2e - Sn2+ is +0.15 V. Consider data from the table of standard reduction potentials for common half-reactions, in your text. For a galvanic cell under standard conditions, which of the following anodic half reactions would produce, at the cathode a spontaneous reduction of Sn4+ to Sn2+ but not Sn2+ to Sn. no yes yes yes yes yes Fe — Fe2+ + 2e- Sn2+ Sn4+ + 2e- Sn Sn2+...

  • Use the tabulated electrode potentials to calculate K for the oxidation of nickel by H+: Ni(s)+2H+(aq)→Ni2+(aq)+H2(g)...

    Use the tabulated electrode potentials to calculate K for the oxidation of nickel by H+: Ni(s)+2H+(aq)→Ni2+(aq)+H2(g) Express your answer using two significant figures. Standard reduction half-cell potentials at 25∘C Half-reaction E∘ (V) Half-reaction E∘ (V) Au3+(aq)+3e−→Au(s) 1.50 Fe2+(aq)+2e−→Fe(s) −0.45 Ag+(aq)+e−→Ag(s) 0.80 Cr3+(aq)+e−→Cr2+(aq) −0.50 Fe3+(aq)+3e−→Fe2+(aq) 0.77 Cr3+(aq)+3e−→Cr(s) −0.73 Cu+(aq)+e−→Cu(s) 0.52 Zn2+(aq)+2e−→Zn(s) −0.76 Cu2+(aq)+2e−→Cu(s) 0.34 Mn2+(aq)+2e−→Mn(s) −1.18 2H+(aq)+2e−→H2(g) 0.00 Al3+(aq)+3e−→Al(s) −1.66 Fe3+(aq)+3e−→Fe(s) −0.036 Mg2+(aq)+2e−→Mg(s) −2.37 Pb2+(aq)+2e−→Pb(s) −0.13 Na+(aq)+e−→Na(s) −2.71 Sn2+(aq)+2e−→Sn(s) −0.14 Ca2+(aq)+2e−→Ca(s) −2.76 Ni2+(aq)+2e−→Ni(s) −0.23 Ba2+(aq)+2e−→Ba(s) −2.90 Co2+(aq)+2e−→Co(s) −0.28 K+(aq)+e−→K(s) −2.92 Cd2+(aq)+2e−→Cd(s)...

  • Selective Oxidation The standard reduction potential for the half-reaction Sn4+ + 2e - Sn2+ is +0.15...

    Selective Oxidation The standard reduction potential for the half-reaction Sn4+ + 2e - Sn2+ is +0.15 V. Consider data from the table of standard reduction potentials for common half-reactions, in your text. For a galvanic cell under standard conditions, which of the following cathodic half reactions would produce, at the anode, a spontaneous oxidation of Sn to Sn2+ but not Sn2+ to Sn4+. 2H+ + 2e - H2 Fe3+ + 3e + Fe Sn2+ + 2e Fe2+ + 2e →...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT