Question

QUESTION 11 A 6.22g piece of metal at 97.6°C is placed in a calorimeter containing 25.0mL of water at 22.0°C. The water tempe
0 0
Add a comment Improve this question Transcribed image text
Answer #1

= MCAT 9 - heat lost / gained m-mass C-speafic heat capacity AT = change in temperature Law of conservation of energy- Heat l

Add a comment
Know the answer?
Add Answer to:
QUESTION 11 A 6.22g piece of metal at 97.6°C is placed in a calorimeter containing 25.0mL...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 6. A piece of 155.0 g aluminium metal at 120°C was placed in a constant pressure...

    6. A piece of 155.0 g aluminium metal at 120°C was placed in a constant pressure calorimeter of negligible heat capacity containing 300.0 g of water at 20°C. Calculate the final temperature of the system (the aluminium metal and the water) in °C: given the specific heat of aluminium metal = 0.90 J/g °C, and that of water 4.184 J/g °C

  • QUESTION 19 A 63.1 g piece of metal whose T - 73.8 °C is placed in...

    QUESTION 19 A 63.1 g piece of metal whose T - 73.8 °C is placed in a coffee cup calorimeter containing 155 g water. When the system reaches equilibrium, the water has changed from 19.20 °C to 23.40°C. What is specific heat of metal? Density of water is 1.00 g/ml. Specific heat of H 20 is 4.184/gºo. 0.483 J/g °C 0.900 J/g °C 3.82 J/g °C 0.0150J/g °C 0.237 J/g °C 0.856 J/g °C 3.53 J/g °C 0.981 J/g °C

  • 4. You placed 43.1 g of an unknown metal at 100 °C into a coffee cup...

    4. You placed 43.1 g of an unknown metal at 100 °C into a coffee cup calorimeter that contained 50.0 g of water that was initially at 22.0 °C. The equilibrium temperature of mixing (T0) was determined to be 23.7 °C. The calorimeter constant was known to be 51.5 J/°C. Specific HeatH2O = 4.184 J/g·°C a. What is the total amount of heat (J) lost by the metal? NG 1.5 b. What was the specific heat (J/g·°C) of the metal?...

  • A 10.0 g piece of iron (C = 0.443 J/g oC) initially at 97.6 oC is...

    A 10.0 g piece of iron (C = 0.443 J/g oC) initially at 97.6 oC is placed in 50.0 g of water (C = 4.184 J/g oC) initially at 22.3 oC in an insulated container. The system is then allowed to come to thermal equilibrium. Assuming no heat flow to or from the surroundings, calculate the final temperature of the metal and water the change in entropy for the metal the change in entropy for the water the change in...

  • A piece of metal weighing 5.50 g at a temperature of 34.5 °C was placed in a calorimeter in 32.35 mL of water at 22.5 °...

    A piece of metal weighing 5.50 g at a temperature of 34.5 °C was placed in a calorimeter in 32.35 mL of water at 22.5 °C. The final equilibrium temperature was found to be 27.5 °C. What is the specific heat of the metal? IVO AQ * R 0 O ? J/K-g

  • A piece of metal of mass 35.0 g at 100.0°C was placed in 150.0 g of...

    A piece of metal of mass 35.0 g at 100.0°C was placed in 150.0 g of water at 20.0 °C. After stirring, the final temperature of the water and the metal is 23.8°C. What is the specific heat capacity of the metal? (specific heat capacity for H2O = 4.184 J/g °C) O-0.89 J 8°C 19.6 J/g °C 1.96J/g °C O 0.89 J/g °C

  • A 10.95 g sample of lead at 88.0°C was placed into a styrofoam cup calorimeter which...

    A 10.95 g sample of lead at 88.0°C was placed into a styrofoam cup calorimeter which contained 15 mL of water at 22.0°C. The final temperature in the calorimeter reached 23.5°C. Calculate the specific heat of lead. The specific heat of water is 4.184 J/g°C.

  • Question 22 (3 points) A 42.1 g piece of metal was heated to 95.4°C and then...

    Question 22 (3 points) A 42.1 g piece of metal was heated to 95.4°C and then dropped into a beaker containing 42.0 g of water at 23.00°C. When the water and metal come to thermal equilibrium, the temperature is 32.10°C. What is the specific heat capacity of the metal? The specific heat capacity of the water is 4.184 J/(g-K) 0.387 J/(g-K) 0.600 J/(g-K) 0.488 J/(g-K) 0.720 J/(g-K) 0.980 J/(g-K)

  • An 78.5 g piece of metal whose T = 63.00 oC is placed in a coffee cup calorimeter containing 125 g water.  &n...

    An 78.5 g piece of metal whose T = 63.00 oC is placed in a coffee cup calorimeter containing 125 g water.    When the system reaches equilibrium, the water has changed from 20.00 oC to 24.00 oC. What is specific heat of metal? An 88.5 g piece of metal whose T = 78.8 oC is placed in a coffee cup calorimeter containing 244 g water.    When the system reaches equilibrium, the water has changed from 18.80 oC to 200 oC....

  • A 32.0-g sample of an unknown metal at 99°C was placed in a constant-pressure calorimeter containing...

    A 32.0-g sample of an unknown metal at 99°C was placed in a constant-pressure calorimeter containing 60.0 g of water at 24.0°C, The final temperature of the system was found to be 28.4℃ Calculate the specific heat of the metal. (The heat capacity of the calorimeter is 14.4/C) J/g °C

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT