Question

13. A diatomic ideal gas is at a pressure of 5 kPa and a volume of 4 m3. What is the change in internal energy of the gas whe

0 0
Add a comment Improve this question Transcribed image text
Answer #1

CHAN CE ÎN aines Peocess 5 Page No

Add a comment
Know the answer?
Add Answer to:
13. A diatomic ideal gas is at a pressure of 5 kPa and a volume of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • a 2 mol sample of diatomic ideal gas is expaning slowly and adiabatically from a pressure...

    a 2 mol sample of diatomic ideal gas is expaning slowly and adiabatically from a pressure eof 5.05 ATM and a volume if 13 literally to a final volume of 29.4 liters. what is the pressure? what is the initial and final temperatures? what is q for gas during this process? what is the change in E int of the gas drluring the process? what is the W on the gas during the process

  • A container holds 4.5 mol of an ideal monatomic gas with a pressure of 125 kPa....

    A container holds 4.5 mol of an ideal monatomic gas with a pressure of 125 kPa. The container initially has a volume of 0.10 m3. The gas undergoes an adiabatic expansion until it reaches a volume of 0.3 m3 and a pressure of 20.0 kPa. What is the thermal energy of the gas after the expansion? How much energy went into or out of the gas as work during the expansion? (Positive for energy into the gas, negative for energy...

  • A bottle at 317 K contains an ideal gas at a pressure of 150 kPa. The...

    A bottle at 317 K contains an ideal gas at a pressure of 150 kPa. The rubber stopper closing the bottle is removed. The gas expands adiabatically against Pext = 107 kPa, and some gas is expelled from the bottle in the process. When P = Pext, the stopper is quickly replaced. The gas remaining in the bottle slowly warms to 317 K. What is the final pressure (in kPa) in the bottle for a monatomic gas for which CV,m...

  • An ideal gas initially at 265 K undergoes an isobaric expansion at 2.50 kPa. The volume...

    An ideal gas initially at 265 K undergoes an isobaric expansion at 2.50 kPa. The volume increases from 1.00 m3 to 3.00 m3 and 12.6 kJ is transferred to the gas by heat. (a) What is the change in internal energy of the gas? (b) What is the final temperature of the gas?

  • An ideal gas initially at 270 K undergoes an isobaric expansion at 2.50 kPa. The volume...

    An ideal gas initially at 270 K undergoes an isobaric expansion at 2.50 kPa. The volume increases from 1.00 m3 to 3.00 m3 and 14.4 kJ is transferred to the gas by heat. (a) What is the change in internal energy of the gas? kJ (b) What is the final temperature of the gas? K

  • A 2.00 mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure...

    A 2.00 mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of 5.04 atm and a volume of L2 Lto a final volume of 30.8 L (a) What is the final pressure of the gas? 1.44 atm (b) What are the initial and final temperatures? initial 385.72 final 269.39 (c) Find Qfor the gas during this process. 0 (d) Find ??¡nt for the gas during this process. What is the relationship between the internal energy...

  • In the figure, 1.73 mole of an ideal diatomic gas can go from a to c...

    In the figure, 1.73 mole of an ideal diatomic gas can go from a to c along either the direct (diagonal) path ac or the indirect path abc. The scale of the vertical axis is set by pab = 6.47 kPa and pc = 3.00 kPa, and the scale of the horizontal axis is set by Vbc = 6.73 m3 and Va = 2.08 m3. (The molecules rotate but do not oscillate.) During the transition along path ac, (a) what...

  • One mole of an ideal diatomic gas goes from a to c along the diagonal path...

    One mole of an ideal diatomic gas goes from a to c along the diagonal path in the figure below. The scale of the vertical axis is set by Pab = 4.8 kPa and pc = 2.2 kPa, and the scale of the horizontal axis is set by Vbc-4.4 m3 and Va 2.2 m 3 bc Volume (m) (a) During the transition, what is the change in internal energy of the gas? (b) How much energy is added to the...

  • We have a diatomic ideal gas with a y of 5/2. It starts with an initial...

    We have a diatomic ideal gas with a y of 5/2. It starts with an initial pressure of 1kPa, an initial temperature of 100 K, and an initial volume of 10 m^3 a) The gas undergoes an adiabatic compression, halving its volume. What is its new pressure? b) What was the work done? c) What was the heat flow? d) Now, keeping pressure constant, heat is put into the gas, doubling the volume. How much heat is added? e) What...

  • In the figure, 1.51 mole of an ideal diatomic gas can go from a to c...

    In the figure, 1.51 mole of an ideal diatomic gas can go from a to c along either the direct (diagonal) path ac or the indirect path abc. The scale of the vertical axis is set by Pab = 5.78 kPa and pc-2.38 kPa, and the scale of the horizontal axis is set by Voc-6.54 m3 and v, = 2.89 m3. (The molecules rotate but do not oscillate.) During the transition along path ac, (a) what is the change in...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT